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This perspective paper discusses how the research community can promote 
enhancement of marine ecosystem forecasts using physical ocean conditions predicted 
by global climate models (GCMs). We review the major climate prediction projects and 
outline new research opportunities to achieve skillful marine biological forecasts. Physical 
ocean conditions are operationally predicted for subseasonal to seasonal timescales, and 
multi-year predictions have been enhanced recently. However, forecasting applications 
are currently limited by the availability of oceanic data; most subseasonal-to-seasonal 
prediction projects make only sea-surface temperature (SST) publicly available, though 
other variables useful for biological forecasts are also calculated in GCMs. To resolve the 
bottleneck of data availability, we recommend that climate prediction centers increase the 
range of ocean data available to the public, perhaps starting with an expanded suite of 
2-dimensional variables, whose storage requirements are much smaller than 3-dimensional 
variables. Allowing forecast output to be downloaded for a selected region, rather than 
the whole globe, would also facilitate uptake. We highlight new research opportunities in 
both physical forecasting (e.g., new approaches to dynamical and statistical downscaling) 
and biological forecasting (e.g., conducting biological reforecasting experiments) and offer 
lessons learned to help guide their development. In order to accelerate this research area, 
we also suggest establishing case studies (i.e., particular climate and biological events as 
prediction targets) to improve coordination. Advancing our capacity for marine biological 
forecasting is crucial for the success of the UN Decade of Ocean Science, for which one 
of seven desired outcomes is “A Predicted Ocean”.
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INTRODUCTION

Marine ecosystem forecasting, often leveraging predictions of 
physical ocean conditions, is an emerging research area that 
has rapidly attracted significant attention (Payne et  al., 2017; 
Tommasi et  al., 2017; Hobday et  al., 2018; Capotondi et  al., 
2019a; Park et al., 2019; Jacox et al., 2020; Bolin et al., 2021). The 
development and improvement of marine biological forecasts 
are motivated by a number of ecological and socioeconomic 
aims, including management of fisheries and aquaculture, 
conservation of endangered marine species, and protection of 
human health. At present, most marine ecosystem predictions 
are in the experimental stage, but in the future, they could be 
operationalized with a wide range of applications.

Many different statistical and dynamical methods can be used 
for ecological prediction on subseasonal to decadal timescales 
(Tommasi et al., 2017; Jacox et al., 2020). However, perhaps the 
most promising approach is to start with general circulation 
or global climate model (GCM) predictions of the physical 
environment and use them as the basis for ecological prediction. 
GCM predictions are conducted for a range of forecast lead times 
(i.e., the length of time between the time of initial condition and 
the time for which conditions are being predicted1). Forecasts 
with subseasonal to seasonal lead time (i.e., several weeks to 
a year) are operationally produced by a number of modeling 
centers, and multiannual predictions (i.e., 1-10 years) are also 
being examined. These global climate forecasts offer a foundation 
to be used for an array of marine ecosystem predictions. While 
alternative methods may also be leveraged to generate biological 
predictions (for example, forecasting fish population dynamics 
by monitoring earlier life stages), they are beyond the scope of 
this paper.

Forecasting marine ecosystems using physical predictions 
consists of a multi-step process, typically including a GCM 
prediction, the dynamical or statistical downscaling of the 
GCM fields, and biological estimation (Figure  1) (e.g., Jacox 
et al., 2020). The data transfer between the tasks is an important 
consideration for the workflow. The most intensive data transfer 
is needed for dynamical downscaling, in which the three-
dimensional (3D) output of a GCM prediction is needed to force 
a regional model (Figure 1A). A prime example of this workflow 
is J-SCOPE (JISAO’s Seasonal Coastal Ocean Prediction of the 
Ecosystem), for which dynamical downscaling using the Regional 
Ocean Modeling System (ROMS) is conducted using surface and 
lateral boundary conditions taken from version 2 of the National 
Oceanic and Atmospheric Administration (NOAA) Climate 
Forecast System (CFSv2) (Kaplan et  al., 2016; Siedlecki et  al., 
2016). This system is supported by publicly available, 6-hourly, 
3D forecast outputs of ocean variables for CFSv2. However, such 
data availability is exceptional; 3D GCM forecast output at higher 
than monthly resolution is typically not publicly available for 
other projects. Thus, in most cases, this workflow requires a close 

1This definition of lead time is widely used for research, though for practical use of 
forecasts, the lead time may be defined based on a time when a forecast is issued 
instead of the time of the initial condition.

collaboration between the climate prediction center and the user 
institute.

A more practical workflow for many researchers is to use 
two-dimensional (2D) GCM output for key fields such as 
SST (Figure  1B). This workflow was employed by a series of 
Australian studies in fisheries forecasting applications (Spillman 
et  al., 2013; Spillman and Hobday, 2014; Eveson et  al., 2015; 
Brodie et  al., 2017). In this case, users may employ statistical 
downscaling rather than dynamical downscaling. A promising 
future extension of this workflow is to use multiple GCM outputs 
(Figure 1C) because a multi-model ensemble can better capture 
reality than a single model due to the reduction of model-specific 
errors, as found for SST (Hervieux et al., 2019; Yati and Minobe, 
2021) and for sea-surface height (Widlansky et  al., 2017; Long 
et al., 2021). Furthermore, the reduction of model-specific errors 
can lead to a better estimation of prediction uncertainty, which 
can be useful for applications using predictions.

For marine ecosystem forecasts based on physical predictions, 
some bottlenecks and gaps need to be resolved. In order to address 
those problems, coordination across institutes is needed, and a 
large body of research is required. Thus, researchers, managers, 
and funding agencies need a strategy to work across climate 
and oceanographic disciplines in pursuit of the larger goal. The 
purpose of this perspective paper is twofold: (1) to review major 
ongoing activities related to climate predictions at subseasonal to 
decadal lead times, and (2) to outline new research opportunities 
for marine ecosystem forecasting.

PRESENT STATUS OF PREDICTIONS OF 
OCEANIC PHYSICAL CONDITIONS

In this section, we review how predictions of oceanic physical 
conditions, which are the basis of marine ecosystem prediction, 
are conducted from subseasonal (two weeks to two months), 
seasonal (from two months to one year), and to multiannual 
(from a year to ten years) lead times, including information on 
publicly available oceanic variables (Table  1). As noted above, 
our focus here is on physical predictions obtained using GCMs. 
Other prediction products may be suitable for some applications 
but are outside the scope of this paper (for example, forecasts 
produced with statistical methods such as linear inverse models2 
and ocean-only model forecasts such as 10-day ocean weather 
forecasts around Japan3).

The subseasonal to seasonal (S2S) prediction project of the 
World Climate Research Programme (WCRP) (Vitart et  al., 
2017) provides S2S prediction datasets for forecast lead-times 
up to 60 days (Table 1). The data are available at the European 
Centre for Medium-Range Weather Forecasts (ECMWF)4 and 
at the Chinese Meteorological Administration (CMA)5. Several 
modeling centers participating in the project provide various 
oceanic variables as 2D outputs, including SST, sea-surface 

2 https://psl.noaa.gov/forecasts/sstlim/ (access January 15, 2022).
3 https://www.eorc.jaxa.jp/ptree/ocean_model/index.html (access January 15, 2022).
4 https://apps.ecmwf.int/datasets/data/s2s (access January 15, 2022).
5 http://s2s.cma.cn/index  (access January 15, 2022).
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salinity, surface currents, sea-surface height, mixed-layer depth, 
and 0-300 m averaged temperature and salinity.

For other subseasonal-to-seasonal prediction projects, 
currently SST is the only oceanic variable made publicly available. 
Those projects include the Subseasonal Experiment (SubX) 
project (Pegion et al., 2019), the North American Multi-Model 
Ensemble (NMME) (e.g., Becker et al., 2014; Kirtman et al., 2014), 
and seasonal prediction by the Copernicus Climate Change 
Service (C3S) (Table 1). However, it should be noted that ocean 
output from CFSv2 seasonal forecasts, which can be obtained 
from NOAA6, includes a suite of 2D variables (temperature, 
salinity, and currents at fixed depths; isotherm depths, sea-level 

6https://www.ncei.noaa.gov/products/weather-climate-models/climate-forecast-
system (access May 18, 2022).

height, 0-300 m heat content) as well as 3D fields (temperature, 
salinity, and horizontal and vertical velocities) at monthly-mean 
or 6-hourly resolution.

Multiannual prediction, which is often called “decadal 
prediction” (Boer et  al., 2016), is in its experimental stage. 
The first systematic collection of multiannual predictions was 
conducted in the context of the Climate Model Intercomparison 
Project Phase 5 (CMIP5) (Taylor et  al., 2012) and has been 
enhanced in CMIP6 (Eyring et  al., 2016). The data of CMIP5 
and CMIP6 are available via the Earth System Grid Federation 
(ESGF)7. In CMIP6, multiannual prediction is coordinated under 
the Decadal Climate Prediction Project (DCPP), and DCPP 

7 https://esgf-node.llnl.gov/projects/esgf-llnl/ (access May 1, 2022).

A

B

C

FIGURE 1 |   Typical workflows of biological forecasts based on physical GCM predictions. The squares indicate systems that produce predictions, downscaling 
or biological estimation, whereas the parallelograms indicate the outputs from the systems. Panel (A) and panel (B) indicate the workflows with dynamical and 
statistical downscalings, respectively, using outputs of a single GCM prediction, and panel (C) indicates the workflow using outputs of multiple GCMs with statistical 
downscaling. The stacked parallelograms in the middle of panel (C) indicate downscaling of different GCM predictions. “BGC” in the figure indicates information 
about biogeochemistry and lower-trophic level biology. Downscaling can be skipped if GCM predictions are of adequate resolution and acceptable bias. The 
physical prediction is assumed to be conducted by GCMs, but it can be made by ESMs, which also include BGC.
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experiments contain both reforecasts (i.e., forecasts simulated 
for a retrospective period; called dccpA) and near real-time 
forecasts (called dccpB) (Boer et  al., 2016). Early evaluations 
of multiannual prediction skill have found that it mainly arises 
from initial conditions in the first few years, and at longer lead 
times is associated with the forced response to climate change, 
especially for temperatures (e.g., Branstator and Teng 2010; 
Yeager et al., 2018). CMIP6/DCPP provides a suite of 2D ocean 
variables as well as 3D ocean temperature, salinity and currents, 
all available as monthly or annual means. Recently, the World 
Meteorological Organization has established the Lead Centre for 
Annual to Decadal Climate Prediction, which annually issued 
a Global Annual to Decadal Climate Update8. The latest report 
documented forecasts for the target years from 2022 to 2026 (see 
also Hermanson et al., 2022).

Most of these prediction projects use GCMs, but a few modeling 
centers use Earth System Models (ESMs), i.e., GCMs coupled 
with a biogeochemical and lower-trophic ecosystem model. 
The Seasonal-to-Multiyear Large Ensemble (SMYLE) (Yeager 
et al., 2022) and the Decadal Prediction Large Ensemble (DPLE) 
(Yeager et  al., 2018), both produced by the National Center for 
Atmospheric Research (NCAR), use the Community Earth System 
Model (CESM). The outputs of DPLE are publicly available on the 
NCAR web site9. Also, biogeochemical and biological variables for 
near real-time multiannual prediction under DCPP (dcppB) are 
available for one model (for the Canadian Earth System Model 
version 5) and for six models for reforecast (dcppA) at the present10.

In addition to considering the availability of data, it is also 
helpful to know whether a subset of the data for a selected 
region can be easily downloaded. The downloading of a selected 

8 https://www.wmolc.org/ (access January 10, 2022).
9https://www.cesm.ucar.edu/projects/community-projects/DPLE/data-sets.html 
(access December 26, 2021).
10 https://esgf-node.llnl.gov/projects/cmip6/ (access May 3, 2022).

region is possible for the C3S seasonal forecast data using the 
Application Programming Interface and for the SubX, NMME, 
and CFSv2 data via Open-source Project for a Network Data 
Access Protocol (OPeNDAP); but such an option is not available 
for the S2S and CMIP6/DCPP data.

This summary of available output from global climate forecast 
systems highlights both the considerable potential in ongoing 
efforts and several major bottlenecks for marine ecosystem 
prediction, specifically the availability of already-computed data 
and the ability to download them efficiently.

NEW OPPORTUNITIES

A wide range of new studies needs to be conducted to successfully 
develop marine ecological forecasts built on physical predictions. 
These studies can be broadly divided into two main categories: 
physical downscaling and biological prediction (Figure 1). The 
physical downscaling can be viewed as an intermediate goal 
that can be undertaken by physical researchers. An appropriate 
intermediate goal will allow researchers of physical oceanography 
to publish their own papers and obtain funding as principal 
investigators, and these prospects are important to attract young 
researchers (Minobe, 2014). To highlight the many specific 
opportunities for research in physical and biological aspects 
of marine ecosystem forecasting, we describe them separately 
below. But of course, even research in specialized areas can 
benefit from interdisciplinary collaboration.

Physical Research
GCM prediction skill should be examined for various oceanic 
variables that are useful for biological forecasts, because skillful 
ocean predictions of quantities that drive biological models are 
needed to achieve skillful ecological forecasts. To date, oceanic 

TABLE 1 | Currently available ocean forecast output from major climate prediction projects on subseasonal to decadal timescales.

Project Name SubX13 S2S14 C3S seasonal 
forecasting15

NMME16 CMIP6/DCPP17

Maximal prediction lead-time 45 days 60 days 5 months 11 months 10 years for most models
Number of models that have near 
real-time forecasts and have the 
ocean model

7 models 8 models 9 models 6 models 5 models for dcppB-forecast18

Number of Ensembles 1-21 4-50 24-60 4-30 10-40
Ocean model resolutions 0.08(1)-1 degree 0.25-1 degree 0.25-1 degree 0.25-1 degree 50-100 km as nominal resolutions
2D ocean data availability for 
forecast data

SST only sea-surface height; temperature, 
salinity, and current speeds at the 
sea surface; 0-300 m averaged 
temperature and salinity; 20°C 
isotherm depth; mixed-layer 
thickness; sea-ice thickness

SST only SST only Surface values; vertically integrated 
values; depth of specific features

3D ocean data availability No No No No Yes
Downloading selected region data Yes No Yes Yes No

13 http://cola.gmu.edu/subx/ (access May 17, 2022). 
14 http://s2sprediction.net/ (access May 17, 2022).
15 https://climate.copernicus.eu/seasonal-forecasts (access May 17, 2022).
16 https://www.cpc.ncep.noaa.gov/products/NMME (access May 17, 2022).
17 https://www.wcrp-climate.org/modelling-wgcm-mip-catalogue/cmip6-endorsed-mips-article/1065-modelling-cmip6-dcpp (access January 15, 2022).
18 https://esgf-node.llnl.gov/search/cmip6/ (access May 17, 2022). 
(1) Only the US Navy Earth System Model has an eddy-resolving high resolution (0.08 degrees).
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prediction skill has been examined mainly for SST (e.g., Becker 
et  al., 2014; Doi et  al., 2019; Hervieux et  al., 2019) including 
marine heatwaves (Jacox et  al., 2022), sea-surface height (e.g., 
Widlansky et  al., 2017; Long et  al., 2021; Shin and Newman, 
2021; Amaya et  al., 2022), and upper-layer temperatures (e.g., 
Yeager et al., 2018; Doi et al., 2020), because these variables are 
important in describing physical climate variability and relatively 
easy to evaluate with observation-based products. However, for 
biological predictions, other variables (e.g., mixed-layer depth, 
upwelling, salinity, bottom temperature, vertical profiles of 
temperature and density) can also be important, as they impact 
nutrient availability and the habitat of marine species, and they 
may be associated with a higher degree of predictability (e.g., 
Siedlecki et al., 2016; Capotondi et al., 2019a).

Furthermore, physical predictions from large ensembles and 
multi-model ensembles should be examined for their use in 
biological prediction. Recent studies identified an interesting 
bias in climate prediction systems known as the “predictability 
paradox” or “signal-to-noise paradox” (Eade et  al., 2014; 
Dunstone et  al., 2016; Smith et  al., 2020). The basic idea of 
ensemble prediction is that the reality can be viewed as one 
member of an ensemble, and thus the difference between the 
ensemble mean and reality (as approximated by observations) 
should be similar to the differences between the ensemble mean 
and each ensemble member. However, when the predictability 
paradox occurs, the ensemble mean is more similar to reality 
than to other ensemble members. In this case, averaging over 
large ensembles is helpful to obtain a better prediction than 
those from smaller ensembles. To increase the size of ensembles, 
it is generally effective to use output from multiple models, and 
as discussed in Section 1, the use of multiple models also has 
the effect of reducing problems specific to individual models. 
Therefore, we suggest that using outputs of large ensembles from 
multiple GCMs can also have advantages for marine biological 
prediction (Figure 1C), and this possibility should be explored.

For regional marine ecosystem prediction efforts, the resolution 
of the global ocean models may not be sufficient, and thus 
dynamical or statistical downscaling of the predicted data at higher 
spatial resolutions may be necessary. Dynamical downscaling 
is used for J-SCOPE, as mentioned above, and various machine 
learning techniques are used for statistical downscaling (Stengel 
et al., 2020; Kashinath et al., 2021). Statistical downscaling schemes 
can be constructed using observations at specific sites together with 
coarse outputs of numerical models, but they can also be built on 
the results of dynamically downscaled data from the coarse model 
outputs (Jacox et al., 2020). The latter approach should be especially 
useful for variables that are not well observed. Both dynamical 
and statistical downscaling should be investigated in detail, as 
they have advantages and limitations. Dynamical downscaling 
can provide a complete representation of the ocean at the needed 
resolution, but will inherit the biases of the climate model that was 
used for the lateral boundary conditions and the surface forcing. 
The skill of downscaled forecasts should be compared to that of 
GCMs to quantify the added value of the downscaling procedure. 
Relative to dynamical downscaling, statistical downscaling can 
better capture observed relationships, but may be limited by data 
availability. Furthermore, dynamical downscaling is much more 

computationally expensive and slower than statistical downscaling, 
which can be important considerations for operational biological 
forecasting. Thus, depending on the specific application, different 
approaches may be more suitable.

Biological Research
It is important to identify which ecological variables are 
promising targets for prediction. The target for prediction should 
be relevant to species valued by society and should be sensitive to 
physical conditions. Candidates of target species can be identified 
by examining the statistical relationships between physical 
conditions and marine ecosystem status using the observational 
data as a first step. A classic example is the relation between the 
Pacific Decadal Oscillation (PDO) and Pacific salmon catches 
(Mantua et al., 1997), and that between the PDO and the Japanese 
sardine population (Yasuda et  al., 1999). A more systematic 
approach using principal component analysis of a large number 
of marine ecosystem indicators reported that many species are 
influenced by climate variability and change in the North Pacific 
and adjacent seas (Hare and Mantua, 2000 ; Tian et al., 2006; 
Litzow and Mueter, 2014; Ma et al., 2019; Yati et al., 2020) and 
in the northeast Atlantic (Brunel and Boucher, 2007). Of course, 
such statistical analysis can only identify correlations, which do 
not necessarily mean causality, and the relationships may be non-
stationary. Furthermore, a causal relationship is not enough for 
prediction, because if physical conditions that influence marine 
species are unpredictable, then biological targets are also not 
predictable (Brodie et al., 2021).

For the potential marine ecosystem targets, prediction skill 
should be assessed by conducting retrospective forecasts (i.e., 
reforecasts) evaluated against observations. Reforecasts using 
global ESMs have demonstrated meaningful prediction skill with 
lead times of a year or more for certain regions and variables, 
including surface pH (Brady et al., 2020), ocean carbon uptake 
(Lovenduski et al., 2019), aragonite saturation state (Yeager et al., 
2022), chlorophyll and net primary productivity (Séférian et al., 
2014; Rousseaux and Gregg, 2017; Krumhardt et al. 2020), and 
even annual fish catch in large marine ecosystems (Park et  al., 
2019). The availability of the biogeochemical model output is very 
important for better understanding the links between physics 
and biology in the model context. These links are still poorly 
constrained by observations due to the sparsity of biogeochemical 
data (Turi et al., 2018), highlighting the need for expanded and 
sustained biogeochemical observational networks in support of 
biological prediction efforts (Capotondi et al., 2019a).

Ecological predictions are also challenged by shifts in the 
relationships between physical conditions and biological 
responses through time and with population sizes. Empirical 
relationships that appear robust for several years can decay 
over time (Myers, 1998; Deyle et al., 2013). Changes in climate 
conditions at the basin scale have been linked to shifts in 
relationships between local physical properties and fisheries 
recruitment (Litzow et  al., 2019). An understanding of the 
underlying ecological mechanisms that explain empirical 
relationships between physical and biological properties and how 
those mechanisms may change over time is necessary to increase 
confidence in ecological predictions.
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In the coming years, regional biological reforecasts should 
be widely examined. Biological reforecasting is a relatively new 
study area, but lessons learned from climate reforecasts can be 
useful to guide similar efforts for biology:

1. Forecast skill should be examined for anomalies, i.e., the 
differences between forecasted raw values and the forecasted 
mean seasonal cycle (or climatology). If the forecast skill 
is examined with raw values, then the skill is likely to be 
dominated by a seasonal cycle rather than the interannual 
variability of interest. Furthermore, since model biases 
tend to grow due to model drift at longer lead times, model 
climatologies should be lead-time dependent.

2. For the estimation of the statistical significance of a metric, 
it is important to take into account the serial correlation of 
the data to be examined. For example, if there are annually 
sampled predicted and observed data for a period of N -years, 
and the respective time series have auto-correlation at a one-
year lag of. ra and  rb, then the effective degrees of freedom 
of the data for the Pearson’s correlation can be estimated as 
N (1−ra rb)/(1+ ra rb) (Bretherton et al., 1999). The influence 
becomes strong when the lag-1 autocorrelation is large. If the 
lag-1 autocorrelation is 0.6 (0.3) then the effective degrees 
of freedom are 47% (83%) of the original data samples. The 
serial correlation is not generally considered in widely used 
software packages or libraries. Therefore, the p-value obtained 
by such packages is inappropriate when the serial correlation 
cannot be ignored. In any case, how degrees of freedom were 
estimated should be clarified.

3. The separation of training and verification data, known as “cross-
validation”, is crucial for assessing the performance of statistical 
estimation (e.g. Arlot and Celisse, 2010). For example, in V-fold 
cross validation, all data are divided into v “folds,” the prediction 
model is trained using data of v-1 folds, the remaining one fold 
is used for validation, and the fold to be used for validation is 
successively changed. Cross-validation is especially important 
when using a statistical or machine-learning technique that can 
substantially overfit the training data.

4. Ensembles of prediction should be used appropriately. Since the 
biological responses to physical conditions may be nonlinear, it 
is desirable to use the individual ensemble members of physical 
forecasts to drive biological models, rather than using the 
ensemble mean of the physical forecasts. A large ensemble size 
is especially useful to evaluate the probability of extreme events 
and to evaluate whether the predictability paradox occurs 
as mentioned above. Furthermore, if biological estimation 
involves uncertainty in the variables other than the physical 
prediction, using ensembles for these variables may be useful 
to understand the uncertainty originating in biological process.

SUMMARY AND RECOMMENDATIONS

Existing subseasonal to decadal climate predictions can potentially 
be very valuable for the prediction of marine ecosystems. However, 
availability of forecast output for ocean conditions is generally 

rather poor; in particular, most seasonal prediction systems 
do not provide ocean variables other than SST. While there 
are technical hurdles to providing additional large datasets, 
one of the reasons for the limited data availability may be that 
the modeling centers do not see enough demand for those 
data to be shared. We suggest that the demand actually exists, 
and we make two recommendations for enabling the uptake of 
physical forecasts in marine ecosystem prediction: 1) Climate 
prediction projects should make more ocean prediction data 
available to the research community. Making an expanded 
suite of 2D variables available, as done by the S2S project 
and CFSv2, would be a good starting point. Some currently 
unavailable 2D variables, such as eddy kinetic energy, could 
be useful for marine biological forecasts (e.g., Brodie et  al., 
2018), and thus they would be candidates of variables to be 
made available in the future. 2) Enable users to download data 
for selected regions. This capability is useful for a wide range 
of users who may be interested in specific regions and greatly 
reduces user requirements for data downloading, storage, and 
processing.

Combining physical and biological disciplines with the 
common goal of improved marine ecosystem prediction will 
be a fruitful area of research with clear applications to society. 
To facilitate this research area, it would be useful to develop 
a set of case studies for biological prediction. For example, 
a massive Northeast Pacific marine heatwave in 2013-2016 
involved compound extremes of a heatwave, a low-oxygen 
extreme, and an ocean acidity extreme (Gruber et al., 2021). 
While the forecast skill and predictability of SST anomalies 
during this event have been explored (e.g., Hu et  al., 2017; 
Jacox et  al., 2019; Capotondi et  al., 2019b; Capotondi et  al., 
2022), further research could investigate how much these 
various co-occurring extremes and their impacts on the marine 
ecosystem could be predicted. Since a regional phenomenon 
is generally studied by regional researchers, other case studies 
distributed across the global ocean can be identified to attract 
the international community’s interest.

As the global community increasingly recognizes the 
sensitivity of marine ecosystems to climate variability and 
change and the potential consequences to human society, 
the time is ripe to enhance forecasts of marine ecosystems by 
pursuing the strategies proposed here. Such efforts are gaining 
some attraction at the international level. For example, the 
North Pacific Marine Science Organization (PICES) is in 
the process of establishing a new working group on “Climate 
Extremes and Coastal Impacts in the Pacific” with a focus on 
climate and marine ecosystem predictions11. Furthermore, 
the United Nations Decade of Ocean Science for Sustainable 
Development (UN Ocean Decade) has been launched for the 
2021-2030 decade. The overarching theme of the UN Ocean 
Decade is “The Science We Need for the Ocean We Want.” 
One of its seven expected outcomes is “A Predicted Ocean.”12 

11 https://meetings.pices.int/members/working-groups/wg49 (access January 15, 
2022).
12 https://www.oceandecade.org/vision-mission/ (access January 10, 2021).
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To know what ocean we can have in the future, the capability 
of marine biological predictions is essential.
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