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Abstract

Ocean ecosystems are vulnerable to climate-driven perturbations, which are increasing in

frequency and can have profound effects on marine social-ecological systems. Thus, there

is an urgency to develop tools that can detect the response of ecosystem components to

these perturbations as early as possible. We used Bayesian Dynamic Factor Analysis

(DFA) to develop a community state indicator for the California Current Ecosystem (CCE) to

track the system’s response to climate perturbations, and to forecast future changes in com-

munity state. Our key objectives were to (1) summarize environmental and biological vari-

ability in the southern and central regions of the CCE during a recent and unprecedented

marine heatwave in the northeast Pacific Ocean (2014–2016) and compare these patterns

to past variability, (2) examine whether there is evidence of a shift in the community to a new

state in response to the heatwave, (3) identify relationships between community variability

and climate variables; and (4) test our ability to create one-year ahead forecasts of individual

species responses and the broader community response based on ocean conditions. Our

analysis detected a clear community response to the marine heatwave, although it did not

exceed normal variability over the past six decades (1951–2017), and we did not find evi-

dence of a shift to a new community state. We found that nitrate flux through the base of the
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mixed layer exhibited the strongest relationship with species and community-level

responses. Furthermore, we demonstrated skill in creating forecasts of species responses

and community state based on estimates of nitrate flux. Our indicator and forecasts of com-

munity state show promise as tools for informing ecosystem-based and climate-ready fish-

eries management in the CCE. Our modeling framework is also widely applicable to other

ecosystems where scientists and managers are faced with the challenge of managing and

protecting living marine resources in a rapidly changing climate.

Introduction

Climate perturbations can have strong impacts on ocean ecosystems that in turn affect social

and economic components of human communities. These effects may be exacerbated when

changes in ocean conditions are more extreme, such as during marine heatwaves (prolonged

events of anomalously warm ocean waters). The increasing attention on these extreme events

and their impacts (e.g., [1, 2]) has invigorated a push for tools that can track and detect as early

as possible the response of marine communities to climate-driven perturbations. Early detec-

tion, and moreover, near-term forecasts of community shifts could help scientists, managers,

and stakeholders better prepare for and respond to the potential consequences of such shifts.

Climate-driven shifts in community structure tend to involve rapid change across multiple

populations that result in switches between contrasting community assemblages that may then

persist for decades. A growing number of studies have documented community reorganiza-

tions in response to climate drivers (e.g., [3–7]). One of the best-known examples is the wide-

spread northeast Pacific community reorganization that followed the 1976/1977 shift in the

Pacific Decadal Oscillation from a cold to warm regime [8, 9]. The abrupt change from a cool

to warm ocean regime had dramatic implications on ecosystem functioning and living marine

resources (LMRs) throughout the region [7, 10–12]. Since then, northeast Pacific marine eco-

systems have experienced several interannual or decadal perturbations that do not appear to

have resulted in community-wide shifts of similar magnitude.

However, between 2014 and 2016 these ecosystems experienced a marine heatwave that

involved the warmest sea surface temperature (SST) and heat content anomalies that had ever

been observed over large areas of the North Pacific, with SST anomalies over 6˚C [13, 14]. It

was one of the most extreme heatwaves globally in its combined magnitude, spatial scale, and

duration [1, 2], and the intense, persistent warming has been attributed to a combination of

natural and anthropogenic forcing [15, 16]. Several studies have documented myriad biologi-

cal responses to this event. For example, within the California Current Ecosystem (CCE), there

were mass strandings of marine mammals [17], increased whale entanglements due to shifting

prey sources [18], mass mortality events for marine seabirds [17, 19, 20], a record-breaking

domoic acid outbreak [21], shifts in pelagic macronekton and micronekton communities and

species richness [22–24], irruptions of previously rare fishes and invertebrates throughout the

California Current [25–28], and extraordinarily high recruitment of rockfishes (genus

Sebastes) [29, 30] and northern anchovy (Engraulis mordax) [31]. Yet, to date, there have been

few quantitative studies of how the marine heatwave impacted the broader CCE community at

multiple trophic levels, and therefore the importance of this extreme event for community-

wide patterns of variability, and the persistence of the community response, remains largely

unknown.

PLOS CLIMATE Tracking and forecasting community state

PLOS Climate | https://doi.org/10.1371/journal.pclm.0000014 March 3, 2022 2 / 29

points of contact are available through the

California Current Integrated Ecosystem

Assessment (CCIEA) web dashboard (https://www.

integratedecosystemassessment.noaa.gov/

regions/california-current). The data is third-party

data and the authors had no special access or

privileges that others would not have.

Funding: Funding for this project came from

NOAA’s Fisheries and the Environment (FATE)

program (project 16-01) awarded to M.E.H, E.J.W.,

M.A.L. and C.J.H. and NOAA’s California Current

Integrated Ecosystem Assessment program (C.J.

H.). The funders had no role in study design, data

collection and analysis, decision to publish, or

preparation of the manuscript.

Competing interests: The authors do not have any

competing interests (financial or non-financial)

with respect to the work presented in this research

article.

https://doi.org/10.1371/journal.pclm.0000014
https://www.integratedecosystemassessment.noaa.gov/regions/california-current
https://www.integratedecosystemassessment.noaa.gov/regions/california-current
https://www.integratedecosystemassessment.noaa.gov/regions/california-current


Indicators of community or ecosystem state are valuable tools for tracking climate-related

changes in ecosystem functioning and evaluating those changes within the context of past cli-

mate perturbations [32]. Moreover, combining long-term monitoring surveys and data with

modeling frameworks that summarize information across taxa and life stages that respond

quickly to climate perturbations could provide early detection of an ecosystem shifting into a

novel state. Early detection of such shifts would benefit ecosystem-based and climate-ready

fisheries management strategies aimed at mitigating possible deleterious ecological and socio-

economic outcomes. There is also a pressing need for forecasts of future ecosystem states to

support forward-looking management of LMRs [33–35], including assessments of risk. As cli-

mate models and forecasts of ocean conditions continue to improve, there are burgeoning

opportunities to develop and test methods that could provide near-term forecasts of commu-

nity state in relation to ocean conditions.

A challenge in summarizing ecosystem responses to perturbations is that time series used

to characterize the ecosystem often involve tens to hundreds of variables (species or climate

indices); there is often some degree of asynchrony among time series (unevenly or irregularly

spaced), and further, each is corrupted by the presence of observation errors. Disentangling

these sources of error and separating the signal from the noise is statistically challenging. Tra-

ditionally, tools such as Principal Components Analysis (PCA) or nonmetric multidimen-

sional scaling have often been used for identifying leading patterns of variability in

multivariate datasets (e.g., [36, 37]); however, these approaches are ill-suited to the analysis of

time series data that are autocorrelated or non-stationary [38]. An alternative approach,

Dynamic Factor Analysis (DFA), is better suited for identifying shared trends that can be used

as a community state indicator. DFA is specifically designed for time series ordination, and

avoids many of the problems associated with other multi-variate approaches [39]. When

applied to a collection of multivariate time series, inference in DFA models focuses on estimat-

ing a smaller number of temporal patterns (’trends’) that best capture the variation observed.

The observed data are then treated as a mixture of these trends [40]. Ward et al. [40] recently

developed a Bayesian implementation of DFA that offers added flexibility in model aspects

over conventional approaches; examples include allowing for extreme “black swan” events

(rare and difficult to predict events) [41] and trend processes that do not follow a random

walk. Output from these Bayesian DFA models can also be used to estimate the probability of

extreme events occurring or switches among contrasting system states. In the first application

of this new method, Litzow et al. [42] examined shared trends of climate and biology time

series in the Gulf of Alaska. Their study did not detect evidence for wholesale community reor-

ganization during the recent northeast Pacific marine heatwave; however, their findings indi-

cated potential for new patterns of ecosystem functioning with continued warming of ocean

temperatures.

The goal of our study is to build on this set of novel statistical tools to develop a model of

the CCE state that can both track and forecast ecosystem changes in response to climate per-

turbations. More specifically, we expand the Bayesian implementation of DFA to test the com-

munity response to environmental variables within the modeling framework and to develop

near-term forecasts of future community states. Using climate and biological data from the

central and southern regions of the CCE, our specific objectives were to: (1) summarize envi-

ronmental and biological variability during 2014–2016 marine heatwave and compare these

patterns to past variability; (2) examine whether there is evidence of departures from previous

climate patterns and of switches to a new community state during the heatwave; (3) identify

relationships, if any, between community variability and climate variables; and (4) test our

ability to create one-year ahead forecasts of species responses and the community state based

on environmental information. While the focus of our study is the CCE, the approach applied
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here is widely applicable to the myriad marine ecosystems worldwide that are vulnerable to a

rapidly changing climate.

Methods

Data

In our analysis, we used oceanographic time series from the southern (n = 6) and central

(n = 6) regions of the CCE, derived from a data assimilative configuration of the Regional

Ocean Modeling System (ROMS) with 0.1˚ (~10 km) horizontal resolution and 42 terrain-fol-

lowing vertical levels (oceanmodeling.ucsc.edu) [43]. From the ROMS output, we generated

monthly time series covering 1980–2018 for a suite of variables including sea surface tempera-

ture (SST), sea surface height (SSH), isothermal layer depth (ILD), Brunt-Väisälä frequency

(BV), a coastal upwelling transport index (CUTI), and a biologically effective upwelling trans-

port index (BEUTI). The ILD is similar to mixed layer depth and defines the depth where tem-

perature deviates by 0.5˚C from the surface value. BV is a measure of water column

stratification, averaged over the upper 200 m of the water column. CUTI and BEUTI are

upwelling indices that quantify vertical transport and nitrate flux through the base of the

mixed layer, respectively [44]. The data were annually averaged (July-June) from the coast to

100 km offshore, with the exception of CUTI and BEUTI, which capture coastal upwelling

within 75 km of shore. In the alongshore direction, we calculated averages for two regions

with a division at Point Conception, California, separating the southern portion of the CCE

(31–34.5˚N) from the central region (34.5–40.5˚N, Fig 1). This is in response to the recogni-

tion of Point Conception as a major biogeographic boundary for the California Current Sys-

tem, with differing wind and current patterns north and south of that feature [45, 46]. The

annual averages were taken from July to June to capture the influence of the El Niño–Southern

Oscillation (ENSO), which peaks in winter and is the dominant mode of interannual variabil-

ity influencing the California Current [47]. We developed models using ROMS output rather

than empirical measurements because they provide full spatial and temporal coverage of sur-

face and subsurface conditions, incorporate available observations, and will enable the use of

ROMS forecasts to then forecast biological changes in the CCE. This ocean model is con-

strained by available satellite and in situ observations to improve its fidelity to nature and has

been validated against independent in situ observations [43, 48]. Output from this model has

been widely used to characterize CCE oceanography, its relation to large scale climate variabil-

ity, and its influence over the marine ecosystem from phytoplankton to top predators (see Dis-

cussion). More details on the oceanographic time series can be found in S1 Table and S1 Fig.

The biology time series included in our analysis were selected based on three criteria: first,

the measured variables would be expected to show rapid (0- to 1-year lag) responses to climate

variability; second, the time series could be updated with no more than one year lag for pro-

cessing time to increase the speed at which biological responses to perturbation could be

detected; and third, the time series were at least 15 years long. A threshold of 15 years allowed

us to include long time series that spanned as many climate perturbations as possible and also

have enough biological time series to develop an informative indicator of community state. In

addition, 15 years is a threshold that has been previously used to define "long oceanographic

time series" in the California Current [50]. The biology time series that met our selection crite-

ria (n = 38) included ichthyoplankton, pelagic young-of-the-year (juvenile fish), squid, and

krill abundance; seabird productivity; and California sea lion pup body condition metrics (S1

Fig, S1 Table). These 38 time series were collected from four disparate ocean surveys, and span

between 22 and 68 years. Datasets collected from surveys that included spatial attributes (e.g.,

ichthyoplankton and pelagic juvenile fish surveys) were first standardized using Generalized
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Additive Models to create a univariate time series for each species. While these datasets gener-

ally include spatial random sampling, the index standardization accounts for uneven distribu-

tions of effort (in space or time). Details on the standardization of individual datasets are

included in S1 Appendix. In addition, the biology data were normalized with log transforma-

tions where appropriate (all zeros were changed to NAs). For example, if the time series data

Fig 1. Sampling locations of California Current Ecosystem biology included in the study analyses. Abundance data for pelagic juvenile groundfishes

and invertebrates are collected on the Rockfish Recruitment and Ecosystem Assessment Survey (RREAS). Ichthyoplankton data are collected on the

California Cooperative Oceanic Fisheries Investigations (CalCOFI) survey. Seabird reproductive success and California sea lion (Zalophus
californianus) pup time series are collected on Southeast Farallon Island and San Miguel Island, respectively. See S1 Table and S1 Fig for detailed

information on the individual time series. The base map layer was sourced from NOAA National Geophysical Data Center (2009) ETOPO1 1 Arc-

Minute Global Relief Model. NOAA National Centers for Environmental Information (accessed: 19 April 2013, [49]).

https://doi.org/10.1371/journal.pclm.0000014.g001
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were assumed to be lognormally distributed (e.g., weight/count data) or the coefficient of vari-

ation was > 1, the data were log transformed. All of the time series from an individual dataset

(survey) were treated the same, i.e., logged or not. More details on the biology time series used

in this study and the associated data sources and log transformations are summarized in S1

Table.

Modeling

We describe the methods in detail below, but in summary our work flow was to (1) apply

Bayesian DFA to climate and biology datasets separately and use model selection tools to iden-

tify the best supported model and number of shared trends, (2) apply ‘black swan’ and regime

detection methods to detect extreme events and alternating community states, respectively, (3)

identify whether the CCE community state was strongly correlated with the climate time series

(compare performance of the biology models with/without environmental covariates), and (4)

evaluate our skill at making predictions of community state and individual species variables.

These four steps map on to the four study objectives outlined in the introduction.

Dynamic factor analysis

We used a Bayesian version of Dynamic Factor Analysis (DFA) [39, 40] using the software

Stan and R [51, 52] as implemented in the ‘bayesdfa’ package [53]. DFA is a multivariate statis-

tical tool somewhat analogous to Principal Components Analyses, but for time-series data

(https://cran.r-project.org/web/packages/MARSS/vignettes/UserGuide.pdf) [54]. For a collec-

tion of time series, the number of estimated ‘trends’ is specified a priori, and DFA estimates

these latent trends as independent random walks. In mathematical form, this is expressed as

xt ¼ xt� 1 þ wt� 1;

where xt represents the value of latent (unobserved) trends at time t, and the process error

deviations wt−1 are generally assumed to be white noise having arisen from a multivariate nor-

mal distribution (with an identity covariance matrix for identifiability). The latent trends are

mapped to the observed data through an estimated loadings matrix Z and residual error et,

yt ¼ Zxt þ b � dt þ et;

where yt is the vector of observed states at time t, and the residual error terms et are assumed

to be drawn from a univariate or multivariate normal distribution. Though the covariance

matrix of wt is generally fixed [39], the covariance matrix of et can be structured; variances

may be shared or not across time series, and off diagonal elements may be estimated. The

parameter vector b represents optional estimated coefficients relating covariates dt to the

observed response. In the context of our DFA modeling, we included climate variables as dt in

models where the biological observations were used as the response yt.

Because we implemented the DFA model in a Bayesian setting, we were able to extend this

model to include additional features. First, to include extreme events, we relaxed the assump-

tion about process errors wt being drawn from a normal distribution and used a multivariate

Student-t distribution (MVT) instead [55]. We also modified the process equation to consider

an optional vector of AR(1) coefficients ϕ on the latent trends. xt = ϕxt−1 + wt−1 [40]. A final

modification of the conventional DFA model is that for some models, process variances can be

estimated rather than fixed at 1 (maximum likelihood approaches generally use this constraint

for identifiability). As implemented in Stan [51, 56, 57], we conducted estimation with three

chains, with a warm-up of 2000 samples, followed by 2000 iterations. We used the split-chain

potential scale reduction factor [58, 59] to assess convergence (Rhat< 1.05). Code to replicate
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these analyses is deployed as an R package on CRAN (‘bayesdfa’) [53] and our public GitHub

repository, https://github.com/fate-ewi/bayesdfa.

Models structure optimization

We ran the DFA on climate datasets (1981–2017) and biological datasets (1951–2017) across

the southern and central regions of the California Current combined. Running the analysis at

this spatial scale allowed us to capture the broader community response to climate perturba-

tions, compared to running models on each multivariate dataset independently (e.g., time

series from a single survey). There are a number of ways to evaluate predictive accuracy of

these models. The commonly used Leave-One-Out Cross-Validation (LOO-CV), for example

holds each observation out in turn and predictions are made from the remaining data. As our

focus was on the temporal nature of the data and forecasting component, we implemented a

variant of k-fold cross validation and treated individual years as unique ‘folds’. Because our

objectives involved evaluating these models for future predictions, we implemented the Leave-

Future-Out Cross Validation Information Criterion (LFO-CV) [60]. We used this approach to

identify data support for (1) the number of latent DFA trends (n = 1–3), (2) first-order autore-

gressive AR(1) coefficients on the trends (ϕ estimated with a Normal(0,1) prior), (3) Student-t

deviations (i.e., evidence of extreme events, using a prior on the MVT degrees of freedom

parameter, v, of v ~ Gamma(2, 0.1)), and (4) a fixed versus estimated trend variance (using a

prior on the standard deviation, σw, of σw ~ Normal(0, 1)).

In addition, we used LFO-CV to identify the most appropriate error structure for the cli-

mate dataset—specifically whether the times series had equal (shared) or unequal (unique)

observation errors. For the biology models, we assumed the observation errors were unique by

dataset, and our estimates of survey variance supported this assumption.

For each model formulation, we applied the LFO-CV method by first fitting the model to

all years of data prior to year T (i.e., training data, years 1, 2, . . ., (T-1)) and then using the fit-

ted model to predict the trend value in year T (i.e., test data). We repeated this process for 10

years, starting with 2017 as year T and working back to 2008, and then calculated the expected

log predictive density (ELPD) across those time steps. The climate and biology models with

the highest ELPD were deemed the best supported models. The LFO-CV is a preferred method

for evaluating future predictive performance of Bayesian models because it properly accounts

for time series structure, and unlike other Bayesian cross-validation methods, does not pro-

duce overly optimistic estimates [60].

Detection of extreme events and regime shifts

After identifying the best-supported DFA model for the climate and biological datasets, we

conducted a post-hoc examination of outlier detection and regime shifts. For outlier detection

of black swan events, we implemented a method similar to that described in Anderson et al.

[41] and applied it to the climate and biology time series. This approach relies on first

differencing the posterior trend mean estimates of the climate and biology trends, xt − xt−1 and

then applies a normal density function to identify year-over-year changes that were unlikely to

have arisen from a normal distribution (given the process variance). Probabilities can then be

assigned to the deviations in each year (e.g., ‘there is a 1:1000 chance of observing a deviation

similar to that estimated in year t’). As described in Ward et al. [40], the presence of regimes

can also be estimated by applying hidden Markov models (HMM) to the estimated state indi-

ces from a DFA. We evaluated support for regimes and alternate states by using the posterior

trend estimates from each model as input. The Bayesian Leave-One-Out Cross Validation
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information criterion (LOO-CV) [61] was used to identify the data support for the number of

regimes (n = 1–3). The model with the lowest LOO-CV value is deemed the best model.

Climate-biology relationships and forecasts of community state

While a wide variety of multivariate or univariate time series methods could be applied to our

observed time series to generate forecasts, our objectives were to develop simultaneous esti-

mates of both the community state (i.e., the DFA trend value) and the raw time series (i.e.,

individual time series summarized by the biology DFA model). We evaluated the ability of our

DFA models to generate short-term (one year lead-time) forecasts of community state by first

evaluating whether the performance of the biology DFA model was improved when climate

time series were included as covariates in the model. If climate time series were found to better

explain the variability in the biology time series, these relationships could potentially be used

to forecast community trends. For our analysis, we ran the DFA on a subset of the biology data

overlapping in time with the climate dataset, i.e., 1981–2017, to make out-of-sample predic-

tions. We used the same LFO-CV procedure described above, with the same forecast period

(2009–2017) to compare the biology models with and without a single climate covariate (see

S2 Table for all model formulations). In this case, the model used biological and climate data

from all preceding years and climate data from the year to be forecast. The six climate covari-

ates from the southern region and the central region of the CCE (12 total) were tested in this

analysis. Once the best-supported biology-covariate model was identified, we used that model

to make predictions of the community state (i.e., DFA trend value) in 2018 using climate data

from that same year and the raw time series of the individual species (i.e., the biology time

series summarized by the DFA model). We evaluated forecast skill based on the prediction

errors of individual species time series and by comparing the forecasts for 2008–2018 to the

2008–2018 trend values estimated from the biology-covariate model that only included data

prior to the forecast year.

Results

Climate and biology trends

The model with the highest predictive accuracy (ELPD) of the climate state in the southern

and central regions of the CCE was a one-trend DFA model (Model 1 in Table 1, Fig 2). This

model included unique observation variances across the six time series, support for heavy-

tailed deviations of the latent trend, an AR(1) coefficient on the trend (S2 Fig), and an esti-

mated trend variance. Overall, the trend captured a well-documented cooling period in the

CCE between 1980 and 2010 (e.g., [62]) as well as strong El Niño events (e.g., 1982–1983,

1997–1998, 2015–2016) and the 2014–2016 marine heatwave. The trends and loadings indicate

that these events were generally associated with weaker upwelling, reduced mixed layer depth,

low nutrient flux, and warm, stratified waters (Figs 2 and 3). All but one of the climate time

series (central ILD) were strongly associated with the single trend, i.e., at least 90% of the load-

ing posterior distributions associated with each time series were above or below zero (Fig 3).

The SST, SSH, and BV frequency (water column stratification) time series from the southern

and central regions of the CCE loaded positively on this trend (Fig 3). The BEUTI and CUTI

time series from both regions of the CCE and the ILD time series from the central region

loaded negatively on the trend (Fig 3).

The climate state during the marine heatwave, as indicated by the DFA trend, was within

the bounds of previous observations. While there was support in the best model for heavy-

tailed deviations in the climate trend (i.e., Student-t deviations S3 Fig), our post-hoc examina-

tion of outliers detected a single extreme event in the climate state in mid-1998 to mid-1999
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(threshold = 0.001), when there was a shift from strong El Niño (1997–98) to strong La Niña

(1998–1999) conditions, and not around the time of the heatwave. Application of the Bayesian

HMM to the climate trend most supported the presence of two hidden states, reflecting the

probability of being in a state associated with warmer conditions versus one with cooler condi-

tions (LOO-CV: one-state = 129.1, two-state = 9.4, three-state = 27.2, Fig 4). The LOO-CV did

not provide support for a shift to a third novel climate state in the southern and central regions

of the CCE during the marine heatwave, however there is a shift back to the previously

observed warm state during the marine heatwave.

The best model for community variability among our biological time series was also a one-

trend model (Model 13 in Table 1, Fig 5). The model formulation was similar to the best cli-

mate model, except the observation variances were unique by dataset (survey) and not individ-

ual time series. We note that the top two models (Model 13 and 14) showed similar predictive

accuracy (Δ ELPD < 1) and only differed with respect to whether the process variance was

fixed at 1 or estimated. Here we only show results for the model with a fixed process variance.

The biology showed strong coherence in community signal; a majority of the time series (31 of

38) loaded strongly (probability > 0.9) on the single trend and most of them demonstrated

loadings in the same direction (Fig 6). The magnitude and direction of the estimated loadings

were consistent with the observed high relative abundance of most juvenile groundfishes

(rockfish, flatfish), squid, krill, and some ichthyoplankton species during the marine heatwave,

and suggest that the reproductive success of some seabird species was higher around the time

of the heatwave as well. The few time series loading in the other direction on the trend indi-

cated a reduction in sea lion pup growth rate and lower abundances of juvenile/adult Pacific

Table 1. Summary information for climate and biology Bayesian DFA models, including whether process error was estimated, observation error variances (unequal

or equal among time series, or unique to each survey), the number of model trends, expected log pointwise predictive densities (ELPD), and standard error of

ELPD.

Time series Model Process sigma Variance index Trends ELPD SE ELPD

Climate 1 Yes unequal 1 -10551.89 759.44

2 No unequal 1 -10682.39 712.96

3 Yes equal 1 -16793.59 1732.54

4 No equal 1 -16881.03 1824.42

5 No unequal 2 -17441.01 1655.23

6 Yes unequal 2 -17818.86 1813.65

7 Yes unequal 3 -21571.65 1674.77

8 No unequal 3 -22882.99 1695.12

9 No equal 2 -23927.86 2694.72

10 Yes equal 2 -24536.19 2953.38

11 Yes equal 3 -38895.66 4024.93

12 No equal 3 -38920.87 4762.15

Biology 13 No survey 1 -2003.32 95.76

14 Yes survey 1 -2003.96 88.88

15 No survey 2 -2155.52 76.05

16 Yes survey 2 -2198.79 78.86

17 No survey 3 -2334.55 118.31

18 Yes survey 3 -2335.10 112.70

Bold text highlights the models that show best support or highest predictive accuracy for the climate and biology data for the southern and central California Current

ecosystem (i.e., highest ELPD). All climate and biology models include an AR(1) process and Student-t deviations.

https://doi.org/10.1371/journal.pclm.0000014.t001
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sardine Sardinops sagax and some ichthyoplankton species (e.g., larval northern anchovy and

Pacific hake Merluccius productus) associated with the heatwave.

The estimated trend from this biology DFA model demonstrates a potential shift in com-

munity state in the mid-1960s, although there is considerable uncertainty around the trend

during this early portion of the time series, likely due to the limited number of observations

(ichthyoplankton only) pre-dating the 1970s (Fig 5, S1 Fig). The community state appears to

be relatively stable from the late 1970s through the early 2000s, and the trend reached a peak

around 2013–2015. Evidence of a community shift early in the time series is supported by our

regime detection analysis, which demonstrated that a two-state model best described the latent

trend (LOO-CV: one-state = 216.4, two-state = 11.8, three-state = 41.8, Fig 7). This shift coin-

cides with a strong increase in the abundance of a few species during that period, including

eared blacksmelt (Lipolagus ochotensis), slender blacksmelt (Bathylagus pacificus), northern

lampfish (Stenobrachius leucopsarus), which are cool water associated mesopelagic species, as

well as a rise in northern anchovy (Engraulis mordax) abundance prior to the shift (S1 Fig).

Our analysis does not document a shift to a novel community state in response to the recent

marine heatwave.

While this model provided slight support for heavy-tailed Student-t deviations in the latent

trend (S4 Fig), we did not detect any black swan events in the community state. We note that

the community response to two strong El Niño events (1982–1983 and 1997–1998) and to

unusually low productivity conditions (2005) in the central CCE appear similar in magnitude

and duration to the response to the 2014–2016 marine heatwave, although the directions of

the responses were opposite (Fig 5). Our regime detection analysis also captured the change in

Fig 2. Shared trend with 95% credible intervals of climate variability in the southern and central California

Current ecosystem (1981–2017).

https://doi.org/10.1371/journal.pclm.0000014.g002
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the central CCE community in the mid to late 2000s (Fig 7), which may be associated with the

large changes in the reproductive success of multiple seabirds (e.g., Cassin’s auklet Ptychoram-
phus aleuticus, common murre Uria aalge, Brandt’s cormorant Urile penicillatus) and in sea

lion pup births around that time (S1 Fig). These taxa may have been impacted by changes in

Fig 3. Posterior distributions for loadings on all of the individual time series associated with the climate trend

(Fig 2). Loadings with darker shading indicate time series loading most strongly on the climate trend. SST, sea surface

temperature; SSH, sea surface height; ILD, isothermal layer depth; BV, Brunt-Väisälä frequency (stratification); CUTI,

Coastal Upwelling Transport Index; BEUTI, Biologically Effective Upwelling Transport Index. See S1 Table and S1 Fig

for climate times series details.

https://doi.org/10.1371/journal.pclm.0000014.g003
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the abundance or availability of important prey items resulting from unproductive ocean con-

ditions in the central CCE in 2005 and the below normal SSTs associated with the 2007–2008

La Niña Event [63–65].

Forecast of community state

In comparing models of the biological response with and without climate covariates, we

found that several biology models with climate predictors outperformed the biology models

that did not include covariates (S2 Table). The climate covariate resulting in the best future

predictions of community state was BEUTI (central region), followed by CUTI (central

region) (Table 2, see S2 Table for all models). The coefficients linking BEUTI to observed

time series indicate strong, positive relationships between nitrate flux and the reproductive

success of seabirds and the abundance of krill in the central California Current (Fig 8). They

also indicate strong, negative relationships between nitrate flux and the abundance of juve-

nile/adult Pacific sardine and larval northern anchovy (Fig 8). The remaining biology-

BEUTI relationships were moderate (e.g., ichthyoplankton, market squid Doryteuthis opales-
cens) to weak (e.g., rockfish spp., Fig 8). The biology-CUTI model was similar to the biol-

ogy-BEUTI model with respect to model structure and estimated species loadings. The

estimated coefficients in the CUTI model (S5 Fig) also show a similar pattern to those in the

biology-BEUTI model. The remaining covariate models only showed weak climate-biology

relationships (e.g., S6 and S7 Figs).

Fig 4. Results of Hidden Markov Models (HMM) showing state probability for latent trends in the climate data

set. The best model invoked two states, and the median probability (and 95% credible intervals) of being in one state

versus the other is shown. The figure reflects the probability of being in the state associated with warmer conditions

versus one with cold conditions.

https://doi.org/10.1371/journal.pclm.0000014.g004
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Given that the biology-BEUTI model was the best supported model over the null model (a

model without covariates), we were interested in evaluating the ability of this covariate model

to forecast the community state. Comparisons between the community state and the commu-

nity state forecasts (out-of-sample estimates) indicate that we had skill in forecasting commu-

nity state one year in advance (Fig 9). Forecasts of the community trend values for ten

additional years (2008–2017, Fig 10) also indicate that we had some skill for many of the years

tested. There are wide confidence intervals around the forecasts; however, given our method-

ology we can expect that the credible intervals around the trend forecast will be larger than the

historical credible intervals (Fig 9). Forecasts have more uncertainty than historical values

because the variance of a random walk increases linearly with time [66, 67]. Furthermore, our

credible intervals are increased because we are additionally (1) propagating full parameter

uncertainty across the MCMC draws projecting it, and (2) using a Student-t distribution,

which has heavy tails and therefore makes the uncertainty intervals wider than if we used nor-

mal distribution.

Overall, the model forecast skill of individual species parameters was moderate to high for

half of the species included in the biology-BEUTI model (S3 Table, S9 and S10 Figs). It is

important to emphasize that the source of variability in predictions for each of the original

time series is a mixture of the magnitude and uncertainty around the trends and loadings (xt,

Z), and the magnitude and uncertainty in the estimated covariates (b). On the one hand, the

time series associated with the highest predictive skill (i.e., lowest prediction errors) included

seabird reproductive success (common murre, Cassin’s auklet) and the abundance of juvenile

Pacific sanddab Citharichthys sordidus, juvenile halfbanded rockfish Sebastes semicinctus,

Fig 5. Shared trend with 95% credible intervals of community variability in the southern and central California

Current ecosystem (1951–2018: Marine heatwave occurred 2014–2016).

https://doi.org/10.1371/journal.pclm.0000014.g005
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market squid, and several ichthyoplankton species (S3 Table, S9 and S10 Figs). On the other

hand, forecast skill was lowest (i.e., highest prediction errors) for the abundance of some juve-

nile rockfishes (chilipepper Sebastes goodei and widow rockfish Sebastes entomelas) and larval

fishes (northern anchovy, mesopelagics), which is likely attributed to a lag or mismatch in the

−1 0 1
Loading

Fig 6. Posterior distributions for loadings on individual time series associated with the biology trend (Fig 5). Only

time series with� 90% of the loading distributions above or below zero are shown). Loadings with darker shading

indicate time series loading most strongly on the biology trend. Cal. = California, Juv. = juvenile fish stage, Juv./

adult = juvenile and adult fish stages combined, all other fish are larval fish. See S1 Table and S1 Fig for times series

details.

https://doi.org/10.1371/journal.pclm.0000014.g006
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timing of the climate-biology relationships. These patterns in forecast skill are similar to those

based on the biology-CUTI, -SST, and -ILD models (S3 Table). Lastly, the uncertainty around

model predictions of species parameters appears to be driven more by the precision of the

model coefficients than by the loadings on the community trend (e.g., S11 Fig).

Fig 7. Results of Hidden Markov Models (HMM) showing state probability for latent trends in the biology data

set. The best model invoked two states, and the median probability (and 95% credible intervals) of being in one state

versus the other is shown. The figure indicates that ecosystem did not shift into a new state following the marine

heatwave.

https://doi.org/10.1371/journal.pclm.0000014.g007

Table 2. Summary information for the top biology-covariate Bayesian DFA models for each covariate and the top two biology only models (years 1981–2017).

Model Process sigma Trends ELPD SE ELPD Covariate Region

1 No 1 -1878.71 71.52 BEUTI central

2 No 1 -1905.27 81.98 CUTI central

3 No 1 -1914.62 83.22 ILD south

4 No 1 -1927.33 88.26 SST south

5 No 1 -1928.03 88.39 BV south

6 No 1 -1946.75 86.33 SSH south

7 No 1 -1951.44 73.59 None -

8 Yes 1 -2038.71 91.44 None -

The table indicates whether process error was estimated (‘Yes’) or fixed (‘No’), the number of model trends, expected log pointwise predictive densities (ELPD),

standard error of ELPD, the environmental covariate included in the model, and the region in the California Current over which the covariate was aggregated. All

models had an AR(1) coefficient on the trend and Student-t deviations. Model 1 was deemed the best model based on its highest predictive accuracy (highest ELPD

value) compared to all other models. BEUTI = Biologically Effective Upwelling Transport Index; BV = Brunt-Väisälä frequency; CUTI = Coastal Upwelling Transport

Index; ILD = Isothermal Layer Depth; SST = Sea Surface Temperature; SSH = Sea Surface Height. See S2 Table for the full suite of model comparisons.

https://doi.org/10.1371/journal.pclm.0000014.t002
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Discussion

We applied a novel set of statistical tools to data from the southern and central regions of the

CCE to document the community response to climate perturbations over the past six decades

and to create near-term forecasts of community state. Our analysis detected a community

response to the 2014–2016 northeast Pacific marine heatwave; however, it did not exceed

Fig 8. A summary of the effect of the Biologically Effective Upwelling Transport Index (BEUTI), a measure of

nitrate flux through the base of the mixed layer, on the single species parameters. Cal. = California, Juv. = juvenile

fish stage, Juv./adult = juvenile and adult fish stages combined, all other fish are larval fish. Blue error bars reflect 95%

credible intervals. S5–S7 Figs show effects of other environment covariates on the biological variables.

https://doi.org/10.1371/journal.pclm.0000014.g008
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normal variability within the study timeframe or result in a shift to a novel community state,

based on the biological time series investigated here. We identified relationships between com-

munity state and multiple climate variables, with nitrate flux through the base of the mixed

layer having the strongest correspondence with individual species time series and the shared

trend in community variability. Moreover, we demonstrated skill in creating simultaneous

one-year lead time forecasts of species responses and community state.

Long-term changes in community state

Many studies and anecdotal accounts have documented unexpected biological responses to

the 2014–2016 northeast Pacific marine heatwave. Based on the biological time series included

in our analysis, the broader CCE community demonstrated a clear response to the marine

heatwave (Fig 5). However, our results do not demonstrate a widespread community reorgani-

zation beyond the archetypal community structure of this dynamic ecosystem in response to

this event. Instead, the mean values for the shared trend in the biology time series, as well as

for the shared climate trend, were within the range of previous observations. Many species

were present during the marine heatwave that are not typically observed in the CCE. While

our analysis could not include these sporadically occurring taxa, due to the large number of

zero observations in the historic survey data, the exceptional presences and high abundances

of those warm species did not result in a persistent signal among the species included in the

DFAs. As additional years of data become available, the DFA models could reveal different

outcomes from 2014–2016. However, this is unlikely given that the taxa and life stages used in

Fig 9. Community variability and forecast of the community state in the southern California Current. The shared

biology trend (blue line, with 95% credible intervals) derived from biology-BEUTI model fit to subset of data (1981–

2018) is shown along with the trend forecast for 2018 (circle, with 95% credible intervals). See S8 Fig for model

loadings.

https://doi.org/10.1371/journal.pclm.0000014.g009
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both studies are known to respond quickly to changes in ocean conditions and given our

assumption that the surveys are consistently sampling at the right time and location to fully

characterize the short-term response.

While our study did not detect a shift in community state in the southern and central CCE

during the 2014–2016 heatwave, we did detect a shift in the 1960s. The 1960s shift was likely

due to a regime shift previously detected in the southern California ichthyoplankton

Fig 10. Forecasts and model estimates of the ‘true’ community state in the southern and central California Current in years 2008–2018 (circle, with

95% credible intervals).

https://doi.org/10.1371/journal.pclm.0000014.g010
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community [7]. The Peabody et al. [7] study included a much broader suite of ichthyoplankton

species than our study which limits our ability to evaluate whether the species driving the shifts

are consistent among studies. Previous studies have also documented a shift in response to the

1976/1977 PDO shift (e.g., [7, 68]), but our analyses did not. Our estimated biology trend is

consistent with the evidence of this regime shift, however, only ichthyoplankton time series

are available prior to the 1970s and there are gaps in the ichthyoplankton data from the late

1960s through the 1970s. The trend estimate therefore has higher uncertainty during this

period than elsewhere in the time series.

The CCE biology time series included in this study showed strong coherence in community

signal in response to regional climate perturbations. Although they span across multiple tro-

phic levels, life-history strategies, and datasets, most of the biological time series loaded in the

same direction on the shared trend (Fig 6). In addition, our the CCE shared biology trend and

loadings captured an unusual aspect of the 2014–2016 warming events: the abundance of sev-

eral taxa, including young-of-year rockfish and anchovy, was high during the marine heatwave

[22, 29, 31]. By contrast, their abundance was greatly reduced in most previous warm events,

including two of the strongest El Niño events on record (1982–1983, 1997–1998) and unusu-

ally low productivity conditions (2005–2006) [69]. High abundances of young-of-year rockfish

and groundfish, squid, and krill in the CCE are generally associated with more southward

transport and subarctic source waters, while abundances are typically far lower in years with

more subtropical waters, which are often associated with El Niño and anomalous warm events

[29, 70]. The unexpectedly high abundance of these taxa in 2014–2016, despite surface-ori-

ented marine heatwave, may be related to the prevalence of subsurface waters that were more

subarctic than subtropical in origin [29] and to some concurrent strong upwelling events, par-

ticularly in spring 2015 [71, 72].

Our results were consistent with recent studies of several top predators in the CCE. The

DFA trends and loadings indicate a negative response of sea lion pup growth and weight to the

2014–2016 marine heatwave, which also aligns with past work showing that sea lion pup con-

dition covaries with abundance of forage such as larval anchovy and sardine, which provide

quality prey to sustain lactation in nursing mothers [73]. Pup condition also improved at the

tail end of the marine heatwave when, despite the warm water, anchovy abundance increased

dramatically [31]. The trends and loadings suggest that the reproductive success of some sea-

birds in the central CCE was not diminished by the heatwave, although the heatwave had

severe impacts seabird productivity in regions to the north [20].

Regional comparison of the marine heatwave’s effect on community state

A compelling outcome of our analysis and a similar analysis applied to Alaskan species by Lit-

zow et al. [42] is that neither detected state changes in North Pacific communities following

the massive 2014–2016 marine heatwave, despite the extremely anomalous physical conditions

throughout most of the basin and a litany of concurrent biological, ecological, social and eco-

nomic effects (see Introduction). An important characteristic of both studies is the temporal

scale of community analysis (1972–2017 for the Gulf of Alaska (GOA) and 1951–2017 for the

CCE). This long temporal scale provides an important context for comparing contemporary

change with the magnitude of historical community shifts. In addition, the Bayesian DFA

accounts for uncertainty in the shared trends in a way that prevents premature detection of

wholesale ecosystem shifts.

We note that Suryan et al. [74], fitted a single-trend, non-Bayesian DFA model to a larger

set of GOA biological time series (n = 187) over a shorter time span (2010–2018) and found

evidence of a well-resolved shift that implied different community states during 2010–2014
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and 2015–2018. The different conclusions of Suryan et al. [74] and Litzow et al. [42] studies

speak to an inherent tension in retrospective analyses of community change. Limited time

series availability means that analyses can be taxonomically and functionally broad (e.g., [74]),

or temporally extensive (e.g., [42]), but not both. Each approach has advantages, but direct

comparison between the two is difficult. Given the impacts of the 2014–2016 event, and that

long-term warming combined with marine heatwaves will push the CCE into novel climate

states, we must consider ecological mechanisms that might explain why these communities

were apparently resilient to the marine heatwave, along with revisiting methodological details

that could further clarify our results.

Environmental covariates

DFA models of CCE biology that included a climate covariate performed better than models

without one. Nitrate flux into the surface mixed layer (BEUTI) was the best-performing covar-

iate for individual species in addition to the shared trend in the southern and central CCE over

the past three decades. Nitrate flux had a strong positive effect on the abundance of krill and

some larval fishes and on the reproductive success of seabirds, and a moderate positive effect

on some pelagic juvenile fishes, squid, and sea lion pup births. Stronger upwelling magnitude

(CUTI), which is correlated with nitrate flux, was the second-best predictor of community var-

iability and had a positive albeit weaker effect on the same suite of species (S5 Fig). These find-

ings are consistent with mechanistic understanding as upwelling increases the supply of

nutrients to shallow waters and enhances the productivity at the lower trophic levels, including

juvenile rockfishes [75], which affects foraging conditions for higher trophic level species, such

as seabirds (e.g., [76]).

BEUTI and CUTI had a strong, negative correlations with juvenile/adult Pacific sardine

and larval northern anchovy. The relative abundance of Pacific sardine in coastal waters off of

Central California has been shown to be lower during periods of strong upwelling [70, 77].

This trend may reflect a change in the production of Pacific sardine or a shift in their relative

distribution. In addition, a negative relationship between upwelling and sardine recruitment

can generally be explained by the transfer of fish larvae to offshore areas where they have low

chance of survival during periods of strong equatorward flow and upwelling [78, 79]. Our

understanding of the mechanisms driving anchovy population dynamics is limited [80].

Climate drivers often act in concert to influence community variability, and here we are

evaluating the effects of climate variables one at a time. An important next step of this work

will be to examine whether including multiple climate covariates further improves the forecast

skill of the CCE biology and our community state indicator. However, the individual climate

variables are collinear and share information, which affects our ability to makes inference on

the covariates. Furthermore, our study is broad synthesis of community indicators and their

response to climate perturbations, and should not be interpreted as replacing more detailed

investigations into the drivers and mechanistic understanding of the indicators included here.

Community state forecasting skill

Our approach for creating simultaneous predictions of species responses and shared ecosystem

variability to ocean conditions shows promise for developing near-term forecasts of commu-

nity state. Our forecasts are based on outputs from the CCE ROMS, which have been used to

examine how oceanographic processes affect fish recruitment variability [81, 82] and produc-

tivity [83], species habitat suitability [84, 85], and species spatial distributions [86, 87]. The

CCE ROMS also supports nowcasts of species distributions based on observed ocean condi-

tions [88–90]. Moreover, multiple efforts are underway in the CCE and other coastal systems
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to use ROMS outputs to develop short-term forecasts of ocean conditions for uptake by scien-

tists, managers, and other end-users [35, 91–93]. Here, we were able to create forecasts of com-

munity state and several individual species parameters one year in advance based on

observations of a single climate variable (nitrate flux). Forecast lead times could be extended

further by using forecasts of ocean conditions rather than observed conditions, and ocean tem-

peratures in the CCE can be skillfully forecast months to a year in advance, with particularly

high skill in the late winter and spring [94]. Future extensions of our work will evaluate

whether different combinations of climate variables and time lags might improve our forecast-

ing skill.

Using DFA to forecast attributes of community structure in the CCE allows us to create

simultaneous forecasts of trends, or ‘ecosystem state’, and raw time series. Our approach could

also be applied individually to each dataset in our analysis to generate taxa-specific indicators

(e.g., seabird productivity, juvenile fish abundance), though these forecasts would be expected

to differ from those with the entire CCE dataset. Similarly, if ecosystem states were not a focus

of inference, alternative forecast models could be applied (e.g., ARIMA or non-parametric mod-

els) [67]. Forecasts for individual time series from the DFA models used here can be seen as a

mixture of the AR forecast on the estimated trends (Fig 9), and linear effects of forecasted cli-

mate variables on each time series (Fig 8). Species that have strong associations or loadings on

the trend and estimated climate effects that are large in magnitude (e.g., market squid, Pacific

sanddabs, shortbelly rockfish Sebastes jordani) are expected to have the most accurate predic-

tions, while those species with weak loadings and weaker effects of climate variables (e.g., Cali-

fornia smoothtongue (Leuroglossus stilbius) are expected to have poorer forecast performance.

Nonstationary relationships are an important consideration for producing reliable ecologi-

cal forecasts. While the year-to-year variability in the estimated trend did appear to be station-

ary in our community models (Figs 5 and 9), the autocorrelation appeared to be nonstationary

with the lag-1 autocorrelation between 2000–present being significantly higher (0.82) than

over the years 1981–2000 (0.23). In addition to nonstationary variance parameters, future anal-

yses may also consider nonstationary relationships in the covariate relationships, or potential

interactions between covariates. A growing number of retrospective analyses have revealed

nonstationary relationships among climate and individual species or community-level vari-

ables [42, 95–99]. In the northeast Pacific Ocean, these studies have been mostly focused on

Alaskan ecosystems with long time series describing climate and biological processes. The

best-documented instance of nonstationary relationships among climate and biology time

series in the North Pacific centers on a climate shift in the late 1980s [98]. Decades of observa-

tional data on either side of that event allow for statistically robust tests for nonstationarity

that are not yet available for post-2014–2016 conditions. However, early indications from

Alaska suggest the possibility that long-standing relationships between leading climate modes

and individual climate and biology time series may have changed following 2014 [99].

Management application

Our approach for developing a community state indicator to track and predict the response of

marine ecosystems to climate perturbations has the potential to support ecosystem-based and

climate-ready management in multiple ways. Garnering knowledge of community state and

the potential for large shifts in ecosystem structure in response to intense and novel climate

perturbations can help inform better, more rapid management decisions for mitigating eco-

logical and socioeconomic impacts. Our intention is to continually update our analyses when

new data become available to provide the most up-to-date information on the CCE commu-

nity state for scientists, managers, and stakeholders.
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The combination of long-term monitoring surveys and data with the modeling framework we

advance here can also help scientists identify or refine key variables of ecosystem change that are

summarized for ecosystem assessments in support of decision-making [32]. For example, it

might be prudent to emphasize ecological time series that load strongest on ecosystem state trends

and demonstrate strong, predictable relationships with climate variables (or other covariates of

interest) over time series with weaker loadings or lower forecast skill. Furthermore, our approach

can provide valuable ecosystem information for scientific, management and coastal communities

during times when researchers cannot sample the biology in marine ecosystems. This added

value became acutely apparent in 2020 when myriad ocean surveys were cancelled or limited in

spatiotemporal scope due to safety restrictions associated with the COVID-19 pandemic.

Finally, our approach provides a quantitative way to help managers discern short-term peri-

ods of unusual community dynamics and/or high variability—such as the 2014–2016 marine

heatwave—from state shifts that represent more enduring transitions into new regimes of eco-

system structure or productivity. Given that global climate change is expected to amplify ocean

change, approaches like the one applied here will become increasingly valuable for identifying

novel community states that require new marine resource management and conservation

considerations.
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