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A B S T R A C T

Satellite remote sensing data are critical for assessing ecosystem state and evaluating long-term trends and shifts
in ecosystem components. Many operational tools rely on continuous streams of remote sensing data, and when a
satellite sensor reaches the end of its designed lifespan, these tools must be transferred to a more reliable data
stream. Transferring between data streams can produce discontinuities in tool products, and it is important to
quantify these downstream impacts and understand the mechanisms that cause discontinuity. To illustrate the
complexities of tool transfer, we compare five products for ocean chlorophyll-a, which is a proxy for phyto-
plankton biomass and an important input for tools that monitor marine biophysical processes. The five chlor-
ophyll-a products included three blended products and two single sensor products from MODIS and VIIRS. We
explored the downstream impacts of tool transfer using EcoCast: an operational dynamic ocean management tool
that combines real-time predictions from target and bycatch species distribution models to produce integrated
surfaces of fishing suitability. EcoCast was operationalized using MODIS chlorophyll-a, and we quantify the
impacts of transferring to the intended replacement of MODIS, VIIRS, and test if impacts can be minimized by
using a blended chlorophyll-a product instead. Differences between chlorophyll products did not linearly pro-
pagate through to the species model predictions and the integrated fishing suitability surfaces. Instead, differ-
ences in species model predictions were determined by the shape of chlorophyll-a response curves in the species
models relative to chlorophyll-a differences between sensors. However, differences in the integrated fishing
suitability surfaces were reduced by canceling of differences from individual species model predictions.
Differences in the integrated fishing suitability surfaces were not reduced by transferring to a blended product,
highlighting the complexity of transferring operational tools between different remote sensing data products.
These results contribute to our general understanding of the mechanisms by which transferring between data
streams impacts downstream products. To aid decision-making regarding tool transfer, we developed an inter-
active web application that allows end-users to explore differences in chlorophyll products within times period
and regions of interest.

1. Introduction

Remote sensing data are critical for environmental management,
and are commonly used for assessing current ecosystem state, evalu-
ating long-term trends, and identifying shifts in ecosystem components.
A myriad of operational tools such as ecological indicators, ecological
forecasts, and natural disaster preparedness systems rely on near real-
time streams of satellite remote sensing data to observe ecosystem state

and change (Quayle et al., 2004; Anderson et al., 2016; Welch et al.,
2019a). However, remote sensing instruments have finite life spans,
requiring operational tools to transfer to new environmental data
streams when sensor quality degrades. Switching data streams may
introduce discontinuities in the downstream products generated by
operational tools, challenging efforts to accurately monitor and predict
ecosystem state (Beaulieu et al., 2013). To minimize the impacts of
these discontinuities, the effects of transitioning between
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environmental data streams needs to be quantified and planned for
before implementation.

Ocean chlorophyll-a estimates (hereafter chlorophyll), a proxy for
phytoplankton biomass, are a critical input for tools that characterize
and monitor marine biophysical processes such as upwelling, harmful
algal blooms, and species movements. Satellite-borne sensors have
monitored chlorophyll since the mid-1970s, beginning with the proof-
of-concept Coastal Zone Color Scanner, followed by the Sea-viewing
Wide Field-of-View Sensor (SeaWiFS), the Moderate-Resolution
Imaging Spectroradiometers (MODIS), the MEdium Resolution Imaging
Spectrometer (MERIS), the Geostationary Ocean Color Imager (GOCI),
the Visible Infrared Imager Radiometer Suite (VIIRS), and most recently
the Ocean and Land Colour Instrument (OLCI) launched in 2016. In
addition, several blended products have been developed that integrate
chlorophyll estimates from multiple sensors, such as those produced by
GlobColour and ESA Ocean Color Climate Change Initiative (Hollmann
et al., 2013; ACRI-ST GlobColour Team, 2017). These blended products
were developed to minimize known temporal discontinuities
(Garnesson et al., 2019; Gregg and Casey, 2010; Uprety et al., 2013)
and spatial biases (Belo Couto et al., 2016; Djavidnia et al., 2010; Nuris
et al., 2017) among chlorophyll sensors.

Since its launch aboard the Aqua satellite in 2002, the MODIS Aqua
ocean color sensor (hereafter: MODIS) has been a primary data stream
for chlorophyll, serving as an input for operational tools like
WhaleWatch, which aims to reduce ship strike risk to blue whales
(Hazen et al., 2017), the Sargassum Watch System, which detects and
tracks pelagic Sargassum floats (Dierssen et al., 2015), and the Cali-
fornia Harmful Algae Risk Mapping system (Anderson et al., 2016).
However, MODIS has now surpassed its designed lifespan, and opera-
tional tools that rely on MODIS will need to switch to its designated
replacement (VIIRS) or to a blended product to maintain continuous
observations. While differences between chlorophyll estimates are well
documented (Mélin, 2009; Belo Couto et al., 2016; Barnes et al., 2019;
Hu et al., 2019), the propagation of those differences into operational
downstream products is relatively unexplored (but see Hu et al., 2015,
Skakun et al., 2018, Ford et al., 2012).

Here we use an existing operational tool, EcoCast, as a case-study to
quantify downstream impacts of transferring between chlorophyll
products. EcoCast is a dynamic ocean management tool for fisheries
sustainability developed for a swordfish fishery that operates off the
U.S. west coast within the California Current Ecosystem (Hazen et al.,
2018; Welch et al., 2018). EcoCast currently uses MODIS chlorophyll
among other environmental variables to predict habitat suitability for
target and bycatch species, and will need to transfer to a different en-
vironmental data stream. Here we explore the impacts of transferring
EcoCast to VIIRS, the intended replacement for MODIS, to understand
the mechanisms of difference propagation through downstream pro-
ducts. Known differences between MODIS and VIIRS are present in
waters off the U.S. west coast (Kahru et al., 2014, 2015), and quanti-
fying how these differences propagate into EcoCast downstream pro-
ducts can help elucidate potential impacts in other operational tools.
Additionally, we test if downstream differences can be minimized by
transferring EcoCast to blended chlorophyll products, which merge
estimates across sensors and may therefore result in reduced down-
stream discrepancies compared to the novel VIIRS sensor.

Evaluating the differences between chlorophyll products can be
challenging and time-consuming. To illustrate this problem beyond the
California Current Ecosystem, we present a global overview of the
spatial and temporal differences between chlorophyll estimates from
MODIS, VIIRS, and three blended products. We also present an inter-
active web application that allows end-users to explore product dif-
ferences in their time period and region of interest. This work highlights
the complexity of transferring operational tools between different en-
vironmental data streams, and the need to evaluate downstream im-
pacts before implementation.

2. Methods

2.1. Chlorophyll product background

2.1.1. Single sensor chlorophyll products
The MODIS sensor onboard the Aqua satellite was launched by

NASA in 2002. Designed with a five-year lifespan (Lindsey and Herring,
2000), MODIS is now well beyond its intended period of operations.
NASA has reported calibration issues for the sensor that have impacted
the quality of the time-series since 2009, with significant impacts
documented since 2012 (ACRI-ST GlobColour Team, 2017; OBPG,
2015). Ocean color measurements became part of the suite of opera-
tional observations made by NOAA under the Joint Polar Satellite
System (JPSS) program, and the continuity of U.S. ocean color sensors
was insured in 2011 when JPSS launched the first VIIRS sensor on the
SNPP satellite. A second VIIRS sensor was launched on the JPSS-1 sa-
tellite (since renamed NOAA-20) in 2017, with additional VIIRS sensors
planned for launch at five-year intervals until 2036. VIIRS sensors have
the advantage over the MODIS sensor of having a wider swath width,
although calibration issues have been noted (Garnesson et al., 2019).
NASA and NOAA both process VIIRS data, but use different meth-
odologies (Barnes et al., 2019). This present study uses MODIS data
produced by NASA's Ocean Biology Processing Group (the 2018 re-
processing) using the standard OC3 band ratio algorithm merged with
the color index (CI) of Hu et al. (2012), and VIIRS data produced by
NOAA/STAR Ocean Color Team through NOAA Multi-Sensor Level 1 to
Level 2 processing system (MSL12) using an improved calibration for
the satellite data record (OC-SDR) (Wang et al., 2017). Both chlorophyll
products are distributed by NOAA/SWFSC/Environmental Research
Division and the West Coast Node of NOAA CoastWatch, available from
the ERDDAP data server (Simons, 2019).

2.1.2. Blended chlorophyll products
The GlobColour project was funded in 2005 by the European Space

Agency to produce a consistently calibrated time-series of chlorophyll
with the highest possible spatial coverage (ACRI-ST, 2007). To max-
imize time-series longevity, GlobColour creates blended products from
four sensors: SeaWiFS, MERIS, MODIS-Aqua, and VIIRS, producing a
20+ year time-series from 1997 to present. Two different products are
served by GlobColour: one is a weighted average of Level 2 sensor
chlorophyll estimates adjusted to MERIS using the OC4Me algorithm
(AVW) and the other blends Level 3 normalized water-leaving ra-
diances across sensors using the GSM model (Maritorena and Siegel,
2005) before producing chlorophyll estimates (GSM). Blended Glob-
Colour products are served by both Hermes (http://hermes.acri.fr) and
Copernicus Marine Environment Monitoring Service (http://marine.
copernicus.eu).

The European Space Agency's Ocean Color Climate Change
Initiative (OC-CCI) was formed to produce a consistent, stable, and
error characterized chlorophyll product that meets the standards re-
quired for Essential Climate Variables (Belo Couto et al., 2016).
Chlorophyll is one of 54 Essential Climate Variables, which are phy-
sical, biological, or chemical variables that critically contribute to the
characterization of the Earth's climate (Bojinski et al., 2014). The Es-
sential Climate Variables are subject to rigorous monitoring principles,
and are required to support the work of the Intergovernmental Panel on
Climate Change. The OC-CCI chlorophyll product is produced by
shifting the wavelengths of MERIS, MODIS, and VIIRS to match the
wavelengths of SeaWiFS (412, 443, 490, 510, 555 and 670 nm), and
then applying a bias correction before merging and producing down-
stream chlorophyll estimates using the OC4v6 algorithm (Jackson and
Grant, 2016; O'Reilly et al., 2000). The OC-CCI chlorophyll time-series
is updated several times per year; at the time of analysis the timeseries
spanned from 1997 to six months before the present. The present study
uses the version 3.1 chlorophyll product (Sarthyendranath et al., 2018)
which is served by OC-CCI (https://www.oceancolour.org) and the
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ERDDAP data server (Simons, 2019) co-operated by NOAA/SWFSC/
Environmental Research Division and the West Coast Node of NOAA
CoastWatch.

2.2. EcoCast case-study

The fisheries sustainability tool EcoCast (Hazen et al., 2018) was
used as a case-study to explore the mechanisms by which differences
between chlorophyll products propagate into the downstream products
of operational tools. EcoCast was developed by a collaboration of aca-
demic, governmental, and non-governmental organizations to address
bycatch issues in California's Drift Gillnet Fishery. Launched for on-the-
water use in 2018 (Welch et al., 2018), EcoCast is designed to help
fishers identify waters off the U.S. west coast that are better or poorer to
fish each day based on the relative habitat suitability for the target
species, swordfish (Xiphias gladius), and bycatch species: leatherback
turtles (Dermochelys coriacea), California sea lions (Zalophus cali-
fornianus), and blue sharks (Prionace glauca). Each day, EcoCast ac-
quires the most recent remote sensing data for chlorophyll and other
variables to predict habitat suitability for target and bycatch species in
real-time. To predict habitat suitability, EcoCast applies boosted re-
gression tree models to the newly acquired environmental data for each
day (see description of models in Hazen et al., 2018). One model exists
for each species with the exception of blue sharks, for which two
models were built in order to utilize data from fisheries observers and
satellite tags (blue shark-O and blue shark-T, respectively). Because
boosted regression trees have natural stochasticity in model fitting, 10
iterations of each model were averaged to produce daily habitat suit-
ability predictions for each species. The species habitat suitability
predictions for each day were assimilated using a weighted algebraic
algorithm to produce integrated surfaces of fishing suitability (Hazen
et al., 2018).

The boosted regression tree models were fit using species datasets
spanning 1990–2014, and as such models were fit using chlorophyll
data from both SeaWiFS and MODIS (Hazen et al., 2018). Species re-
cords from 1997 to 2003 were associated with SeaWiFS chlorophyll,
records from 2003 to 2014 were associated MODIS chlorophyll, and
record prior to 1997 was removed due to lack of overlap with a science-
quality chlorophyll product. When EcoCast was operationalized in
2018, daily 8-day rolling average chlorophyll products from MODIS
were used for model prediction. Due to the longevity of the species
records dataset, there is insufficient overlap with the VIIRS chlorophyll
time-series (2012-present) to refit the boosted regression tree models.
Instead, we test for differences in model predictions based on MODIS
and VIIRS chlorophyll to capture impacts of operational model transfer.

Time-series of 8-day rolling averages for MODIS and VIIRS chlor-
ophyll (Appendix S1; Table S1) were downloaded for each day in the
2015–2018 fishing seasons (August–December, inclusive). Daily time-
series for Globcolour AVW, Globcolour GSM, OC-CCI blended products
(Appendix S1; Table S1) were downloaded for each day in the
2015–2018 fishing seasons and converted into 8-day rolling averages to
match the temporal resolution of the MODIS and VIIRS products. The
five species boosted regression tree models were predicted using each of
the five 8-day rolling average chlorophyll time-series to produce time-
series of species habitat suitability (n = 5 for each species; n = 25 in
total). Then, the weighted algebraic algorithm was run to integrate the
species habitat suitability predictions to produce time-series of fishing
suitability based on each of the chlorophyll time-series (n = 5).

To explore the mechanisms by which differences between MODIS
and its intended replacement – VIIRS – propagates into EcoCast
downstream products, the time-series of MODIS and VIIRS-based pro-
ducts (log MODIS and VIIRS chlorophyll, MODIS- and VIIRS-based
species habitat suitability, MODIS- and VIIRS-based fishing suitability)
were restricted to days and pixels with data for both MODIS and VIIRS
to remove the effect of differences in temporal and spatial coverage. To
test if differences can be minimized by transferring EcoCast to a

blended product as opposed to VIIRS, the time-series for MODIS, VIIRS,
Globcolour AVW, Globclour GSM, and OC-CCI-based products were
restricted to days and pixels with data for all five chlorophyll products.
These two analyses were handled separately to preserve as much data
as possible in the two product MODIS/VIIRS comparison (379 days with
data common to both products compared to 277 days with data
common to all five products). The time-series for each product was then
standardized between zero and one to allow direct comparison, sub-
tracted from its MODIS-based time-series counterpart to calculate inter-
product difference, and tested for significance using ANOVA in the R
“stats” package (R Core team, 2019).

2.3. Global analysis

Monthly composites of global single sensor products (MODIS,
VIIRS) and blended products (GlobColour AVW, GlobColour GSM, OC-
CCI) were downloaded between 2012 and 2018 (Appendix S1; Table
S1). Only months with data for all five products (n = 77) were con-
sidered for further analysis. For each month, the pixels retrieved for
each global product were restricted to areal extents with data common
to all products in order to remove the effect of differences in spatial
coverage. To capture temporal difference between products, spatial
means of log chlorophyll were calculated for each month and product.
To capture spatial differences between products, log chlorophyll was
averaged across all months for each product and each grid cell. Areas of
anomalously high and low spatial differences between products were
assessed by identifying pixels greater or< 1.5 standard deviation of the
mean of all products.

3. Results

3.1. EcoCast case-study

Chlorophyll estimates in the California Current Ecosystem were
significantly higher in MODIS than in VIIRS across the time-series
(Fig. 1A, Table 1; p < 0.0001). This significant difference propagated
into species habitat suitability predictions and EcoCast fishing suit-
ability, with higher values predicted from MODIS for all cases except
blue shark-T and sea lions (Fig. 1B, Table 1; p < 0.0001). The largest
absolute mean difference between MODIS- and VIIRS-based time-series
was found in the swordfish predictions (difference = 0.031, Table 1),
followed by EcoCast fishing suitability, chlorophyll estimates, blue
shark-O, blue shark-T, sea lions, and lastly leatherbacks with the
smallest difference (difference = 0.006, Table 1). Differences were
highly variable across the species habitat suitability predictions; how-
ever, this variability was not related to chlorophyll importance in the
models (Table 1, Appendix S2; Fig. S1). Differences between MODIS
and VIIRS for all products were significant (p < 0.0001; Table 1).

Differences between MODIS and VIIRS chlorophyll estimates were
dependent on chlorophyll concentration (Fig. 2A) with MODIS produ-
cing higher estimates at low concentrations (<−0.51 log mg m−3),
and VIIRS producing higher estimates at high concentrations (>−0.51
log mg m−3). Spatially, these differences created a cross-shore gradient
with higher VIIRS estimates in nearshore productive waters (Fig. 2B)
and higher MODIS estimates in offshore oligotrophic waters (Fig. 2C).
This spatial gradient persisted in downstream predictions of species
habitat suitability and the EcoCast fishing suitability (Fig. 2D–F).

Across time, MODIS-VIIRS differences were highly variable within
and between chlorophyll estimates and downstream products. MODIS
chlorophyll estimates were generally higher in all days, except at the
end of 2018, when VIIRS estimates became higher (Fig. 3A). The
variability of difference in downstream species habitat suitability pre-
dictions (Fig. 3B) was related to the shapes of the chlorophyll response
curves in the boosted regression tree models (Fig. 4, Appendix S2; Fig.
S2). For example, predicted swordfish habitat suitability was much
higher based on MODIS than on VIIRS during the fall of 2017 (Fig. 3B,
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Box 1), which was caused by the distribution of MODIS chlorophyll
values during this time being shifted to the right relative to the VIIRS
distribution, and overlapping more with high values in the response
curve (Fig. 4A). Similarly, predicted sea lion habitat suitability during
winter 2018 was higher based on VIIRS (Fig. 3B, Box 2), when the
chlorophyll distribution during this time overlapped with high values of
the response curve peak (Fig. 4B). In contrast, leatherback habitat
suitability predictions were very similar between the two chlorophyll
products across the time-series (Fig. 3B); as both the MODIS and VIIRS
distributions overlapped similarly with a trough in the response curve
(Fig. 4C).

Downstream differences in EcoCast fishing suitability were not re-
duced by using a blended product as opposed to VIIRS (Table 2). Dif-
ferences in chlorophyll estimates and EcoCast fishing suitability were
smallest when transferring to VIIRS (mean difference from MODIS
0.0207 and 0.0039, respectively) and largest when transferring to
Globcolour GSM (mean difference from MODIS 0.049 and 0.0121, re-
spectively) (Table 2). Chlorophyll estimates and EcoCast fishing suit-
ability were significantly higher in MODIS than in VIIRS, Globcolour
AVW, Globcolour GSM, or OC-CCI across the time-series (Table 2;
p < 0.0001). Spatially, the chlorophyll estimates from the three
blended products differed most from MODIS estimates inshore, where
blended estimates were significantly lower than MODIS (Fig. 5B–D).
Cross-shore gradients were also apparent in comparisons of MODIS-
based fishing suitability and fishing suitability based on the other four
products. MODIS-based fishing suitability was higher offshore and
fishing suitability based on VIIRS, Globcolour AVW, Globcolour GSM,
and OC-CCI was higher inshore (Fig. 5E–H).

3.2. Global analysis

We compared the five chlorophyll products globally to help identify
areas beyond the California Current Ecosystem where tools transfer is

likely to be more or less problematic. Globally, the five chlorophyll
products were most similar in open ocean waters at mid to low lati-
tudes, with disagreement between products more apparent towards the
poles (Fig. 6). GlobColour GSM and MODIS had the most anomalously
high estimates (i.e. pixels with concentrations greater than the mean of
all products plus 1.5 standard deviations). VIIRS and OC-CCI had
anomalously low pixels with respect to the mean of all products near
both poles, while anomalously low pixels with respect to the mean of all
products in the GlobColour AVW imagery were concentrated in the
tropical Atlantic. In general, chlorophyll concentrations in subtropical
ocean gyres were consistent across products, while concentrations in
major ocean currents had the most disagreement between products
(Fig. 6). For example, pixels in the North Pacific Current were anom-
alously high with respect to the mean of all products in GlobColour
GSM and MODIS, and anomalously low with respect to the mean of all
products in VIIRS and OC-CCI (Fig. 6, Appendix S3; Fig. S1). Gulf
Stream pixels were also anomalously high with respect to the mean of
all products in GlobColour GSM and MODIS, and anomalously low with
respect to the mean of all products in VIIRS and OC-CCI (Fig. 1, Ap-
pendix S1; Fig. S2). Monthly time-series of chlorophyll products showed
similar relationships between the five products across time, although
there were some regional differences (Appendix S3; Fig. S4). To facil-
itate comparisons between products, we developed the Ocean Color
Explorer (https://heatherwelch.shinyapps.io/oceancolorexplorer/), an
interactive R shiny web application that allows end-users to compare
time-series of the five chlorophyll products for their area and time
period of interest.

4. Discussion

Operational tools often rely on satellite remote sensing instruments
that have finite life spans. Our study highlights the complexities of
transferring operational tools across environmental data streams, and

Fig. 1. The distribution of difference between
MODIS and VIIRS across the time-series for A)
chlorophyll estimates and EcoCast integrated fishing
suitability, B) habitat suitability for the five species.
Positive and negative values on the x-axis indicate
MODIS-based products are higher and lower than
VIIRS-based products, respectively.

Table 1
Mean difference and mean absolute difference between MODIS- and VIIRS-based chlorophyll and downstream products of habitat suitability for the five species and
EcoCast fishing suitability, with F and p values from an ANOVA. For each product, difference is calculated by subtracting the VIIRS time-series from the MODIS time-
series. Mean difference indicates if values are on average higher in MODIS or VIIRS (positive and negative values, respectively); mean absolute difference indicates
the average magnitude of difference regardless of directionality. For the five species, the importance (%) of chlorophyll in boosted regression tree models are also
reported.

Product Chlorophyll importance Mean difference Mean absolute difference F(1, 1,798,632) p value

Chlorophyll 0.006 0.016 2287.30 < 0.0001
Blueshark - observer 2.42 0.012 0.015 1737.29 < 0.0001
Blueshark - tracking 9.97 −0.007 0.010 642.59 < 0.0001
Leatherback 12.23 −0.002 0.007 32.89 < 0.0001
Sea lion 11.09 0.003 0.006 140.37 < 0.0001
Swordfish 6.74 0.028 0.031 10,870.85 < 0.0001
EcoCast fishing suitability 0.011 0.020 2601.19 < 0.0001

H. Welch, et al. Remote Sensing of Environment 242 (2020) 111753

4

https://heatherwelch.shinyapps.io/oceancolorexplorer/


revealed the downstream impacts caused by this transfer. Using an
operationalized tool for fisheries sustainability as a case-study, we
found that differences between two chlorophyll products (MODIS and
VIIRS) did not linearly propagate through tool downstream products,
and were affected by the statistical procedures applied during tool
workflow. We show significant spatial and temporal differences be-
tween chlorophyll products at a global scale, demonstrating that this
problem is not unique to the U.S. west coast. Below we explore the
mechanisms of downstream difference propagation in the case-study

tool, and the factors that contribute to global and regional discrepancies
between chlorophyll products. These considerations can help guide
decision-making regarding the transfer of operationalized tools be-
tween different chlorophyll products.

Transitioning from MODIS to VIIRS produced unexpected impacts in
model predictions of species habitat suitability and EcoCast integrated
surface of fishing suitability. Differences in species habitat suitability
were dictated by the change in overlap between MODIS and VIIRS
chlorophyll distributions and the model-specific chlorophyll response

Fig. 2. Spatial differences between MODIS and VIIRS chlorophyll and downstream products: A) Daily mean MODIS and VIIRS chlorophyll estimates in the case-study
region with a linear fit between them (dashed line) and the one-to-one line (solid line). B) Mean VIIRS chlorophyll for 2012–2018. The black contour at log
(chlorophyll) = −0.51 mg m−3 separates productive inshore waters from oligotrophic offshore waters. Differences between MODIS and VIIRS for C) chlorophyll, D)
blue shark-T habitat suitability, E) swordfish habitat suitability, and F) EcoCast fishing suitability. C–F) Plots show MODIS minus VIIRS for each product. Hatching
indicates where differences are larger than one standard deviation from the spatial mean of difference.

Fig. 3. Time-series of spatially-averaged differences between MODIS and VIIRS in the case-study region for A) chlorophyll and EcoCast fishing suitability, and B)
habitat suitability for the five species. Plots show MODIS minus VIIRS for each product.
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curves. This impact was variable between and within species across
time. Interestingly, we found the greatest difference between MODIS-
and VIIRS-based time-series in the swordfish habitat suitability

predictions, which was larger than that for the chlorophyll estimates
and for EcoCast fishing suitability. For all other species, habitat suit-
ability differences were lower than differences in the chlorophyll esti-
mates, likely due to the low importance of chlorophyll relative to other
covariates in the species models (Appendix S2; Fig. S1). Differences in
EcoCast fishing suitability were reduced by a canceling out effect of
species-specific habitat suitability differences (Tables 1, 2). This sug-
gests that integrated tool products can exhibit reduced or enhanced
differences depending on whether individual species differences are in
opposition or in agreement.

These results are likely affected by the species model type, species
biology, and study region of the case-study analysis. For example,
species model types that allow for non-linear responses to chlorophyll,
compared to linear responses, may be more sensitive to differences
between chlorophyll products. Additionally, non-linear responses in the
boosted regression tree models used here typically have sharper step-
wise transitions between response values because the models use binary
splits to relate species responses to predictors. These sharper transitions
likely have larger impacts on downstream products relative to non-
linear models that produce smoother responses curves, e.g. generalized
additive models.

Fig. 4. Relationships between MODIS/VIIRS chlorophyll distributions and species response curves for three different species and time periods: A) swordfish in fall
2017, B) sea lions in winter 2018, and C) leatherback turtles for the full study period (2015–2018). Response curve means are shown in red and ranges across the ten
iterations of each model are shown in grey fill.

Table 2
Mean difference and mean absolute difference between MODIS-based products
(chlorophyll and EcoCast fishing suitability) and products based on VIIRS,
GlobColour AVW, GlobColour GSM, and OC-CCI, with F and p values from an
ANOVA. For each product, difference is calculated by subtracting the non-
MODIS time-series from the MODIS time-series.

Product Mean
difference

Mean
absolute
difference

F(1, 162,366) p value

Chlorophyll AVW 0.0273 0.0273 784.97 <0.0001
GSM 0.049 0.0498 4061.25 <0.0001
OC-CCI 0.0351 0.0353 1315.44 <0.0001
VIIRS 0.0207 0.0211 521.59 <0.0001

EcoCast fishing
suitability

AVW 0.0063 0.0081 46.71 <0.0001
GSM 0.0121 0.015 178.18 <0.0001
OC-CCI 0.0063 0.0083 43.52 <0.0001
VIIRS 0.0039 0.0108 21.3 <0.0001

Fig. 5. Spatial difference between MODIS and VIIRS-, GlobColour AVW-, GlobColour GSM-, and OC-CCI-based chlorophyll and EcoCast fishing suitability. For each
product, differences are calculated by subtracting the non-MODIS time-series from the MODIS time-series. Hatching indicates where differences are larger than one
standard deviation from the spatial mean.
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Species biology can also play a role in how chlorophyll differences
affect downstream products. In the present study, chlorophyll had re-
latively minor importance in the species models relative to the other
environmental covariates (~2–12% explanatory power; Table 1). The
relative importance of chlorophyll in a species model may impact the
magnitude of difference between model predictions based on different
chlorophyll products. Finally, results might be affected by study region,
as relationships between chlorophyll products has been shown to vary
regionally (Djavidnia et al. 2010). Additionally, the relationship be-
tween VIIRS and MODIS chlorophyll estimates can vary when com-
pared over larger ranges of concentration (Kahru et al., 2015). Thus,
specific results presented here are not necessarily transferrable to other
models, species, and regions. However, these considerations contribute
to our general understanding of the mechanisms by which differences
between chlorophyll products propagate through the workflow of op-
erational tools.

Differences in EcoCast fishing suitability were not reduced by
transitioning from MODIS to a blended chlorophyll product
(GlobColour GSM, GlobColour AVW, or OC-CCI) as opposed to VIIRS
(Table 2), highlighting the challenge of transferring operational tools
between products. This result is perhaps to be expected considering the
efforts that have gone into maintaining the continuity between the
MODIS and VIIRS chlorophyll products (Wang et al., 2016). The
blended products, in contrast, were developed to provide continuous
chlorophyll datasets merged over multiple satellite missions. These
results suggest that ultimately, tool developers should aim to eliminate
the need to transition between chlorophyll products by taking ad-
vantage of the long time-series of the blended products during initial
operationalization. However, blended products might still show arte-
facts due to unaccounted differences between missions, and it will be
important to test how tool outputs vary across time as new missions are
added into blended products. For tools that are already operationalized
on a single-sensor product and cannot avoid the transfer problem, tool
developers should compare the available chlorophyll products to de-
termine which have the most alignment with the currently utilized
product over the spatial domain of the tool.

Comparison of VIIRS and blended chlorophyll products to MODIS
revealed high disagreement for both chlorophyll and fishing suitability
in productive inshore waters (Fig. 5). Chlorophyll estimation in these
productive waters is more difficult than in generally oligotrophic Case 1

waters (Morel et al., 2007). Regionally optimized chlorophyll algo-
rithms are frequently applied in coastal waters to correct remote sen-
sing estimates to better fit in-situ data (e.g. Jiang et al., 2017; Yoon
et al., 2019). A regionally-tuned algorithm that additionally aims to
minimize inter-sensor differences exists for the California Current
Ecosystem (Kahru et al., 2012), and could potentially alleviate chal-
lenges associated with inshore chlorophyll estimation and operational
tool transfer. However, these corrected chlorophyll estimates are not
produced in near-real-time, which is a requirement for operational tools
such as EcoCast. Producing and serving these regionally corrected es-
timates in near-real-time could facilitate the development of opera-
tional tools in the California Current Ecosystem.

Global comparison of the five chlorophyll products revealed that
challenges associated with tool transfer are likely to persist beyond the
EcoCast domain. As with the California Current Ecosystem, global in-
shore waters generally displayed the highest disagreements among
products. In these Case 2 waters, variations in water optical quality are
driven by suspended inorganic materials and other substances in ad-
dition to phytoplankton, making chlorophyll estimations in more
complex. Additionally, waters in optically-complex and productive re-
gions like transition zones, fronts, upwelling regions, and high latitudes
showed higher disagreement between products. Case 1 open ocean
waters had high inter-product similarity, consistent with previous re-
sults (Djavidnia et al., 2010). In Case 1 waters, phytoplankton are
primarily responsible for the optical signal, making chlorophyll esti-
mates in these waters relatively straightforward (Bailey and Werdell,
2006; IOCCG, 2000). These results suggest that inter-product compar-
isons prior to transfer will be especially important for tools that operate
in inshore waters and in productive, optically-complex open ocean
waters.

4.1. Future directions

Additional factors to consider regarding tool transfer include data
currency requirements, and the purpose of the tool. While most pro-
ducts are available in near real-time, the OC-CCI product is updated
several times during the year and currently has a six-month lag, making
it unsuitable for tools that require near real-time data. The intended
purpose of the tool will also affect product choice. Tools that aim to
capture long-term trends should consider the OC-CCI product, which

Fig. 6. Long-term average of five global chlorophyll products from 2012 to 01 to 2018–06, the time-series common to all products. Scale bar shows log chlorophyll
concentration (mg m−3). Grey and black color pixels are areas that have concentrations greater and< 1.5 standard deviation from the mean of all products,
respectively. Bottom right plot shows the bounding boxes of regional analyses in Appendix S3, superimposed over the mean of all products.
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targets climate quality consistency with minimal inter-sensor bias (Belo
Couto et al., 2016; Mélin et al., 2017). Tools that aim to monitor short-
term fluctuations might perform better with a single sensor product or
one of the GlobColour products, which are available as near-real time
products and reprocessed historical time-series (Belo Couto et al., 2016;
Mélin et al., 2017).

Lastly, differences in data density caused by cloud cover, aerosols,
and sun glint will affect product choice. Data density (i.e. the frequency
of missing data in pixels across time) will vary between products, for
example MODIS has higher data density than VIIRS and the three
blended products in waters offshore the U.S. west coast (Appendix S2;
Fig. S3). Gap-filling procedures such as spatial interpolations and Data
INterpolating Empirical Orthogonal Functions (DINEOF), which inter-
polates across both space and time, can help alleviate issues sur-
rounding data density (Beckers and Rixen, 2003). Data assimilative
ocean models, which combine available observations with a regional
circulation model to produce ocean state estimates, offer another gap-
free alternative. Physical outputs from these models have been used to
inform fisheries tools off the U.S. west coast (Abrahms et al., 2019;
Welch et al., 2019b), and similar products for chlorophyll are in de-
velopment (Mattern et al., 2017). Additionally, for tools that utilize
species distribution models, gap filling may be done at the modeling
stage by model types that implicitly deal with missing data, such as the
boosted regression trees utilized in the EcoCast case-study.

The wide variety of reprocessing versions, ocean color algorithms,
and available chlorophyll products mean that caution should be em-
ployed when extrapolating our results beyond the specific products and
time-series explored here. Results might differ if different products were
used, such as the NASA VIIRS chlorophyll product or version 4 of the
OC-CCI product released June 2019. For example, a global comparison
of products between 2002 and 2007 found GlobColour GSM estimates
to be higher than OC-CCI estimates, consistent with our results, while
GlobColour AVW estimates and MODIS estimates were higher and
lower than OC-CCI estimates, respectively (Belo Couto et al., 2016),
opposing the results of this study. Another global analysis conducted
from 1997 to 2019 found MODIS estimates to be higher than VIIRS
estimates (Garnesson et al., 2019), as did a regional analysis from 2012
to 2013 in waters around Southeast Asia (Nuris et al., 2017), with both
studies consistent with our results. End-users should take care to com-
pare the specific version of the products they intend to use in their
region and time period of interest. Additionally, this work aimed to
understand inter-product differences, and did not examine product
accuracy as compared to in situ data. GlobColour GSM was found to
have the lower error compared to in situ data than GlobColour AVW and
MODIS (Ford et al., 2012). However, chlorophyll products show re-
gional accuracy biases to observed data (Bailey and Werdell, 2006) and
if available, it would be useful to compare products to in situ water
samples to aid in product selection (see an example in Kahru et al.,
2014).

While it is one thing to highlight the importance of cross-product
comparisons, in practice we understand that these comparisons can be
costly in terms of time and computing resources, and are frequently
only a small component of the overall project objectives. To decrease
the workload associated with product selection, we developed the open
access Ocean Color Explorer. Additionally, online tools like the SWFSC/
Environmental Research Division's ERDDAP (https://coastwatch.pfeg.
noaa.gov/erddap/) graphic explorer (Simons, 2019) and NASA Gio-
vanni's time-series plotter (https://giovanni.gsfc.nasa.gov/giovanni/)
can aid in product comparison. Lastly, expert opinion is an invaluable
source of product expertise and each product has a readily accessible
contact team available to field questions and aid interpretation, for
example the NASA OceanColor forum (https://oceancolor.gsfc.nasa.
gov/forum/oceancolor/forum_show.pl). These resources can aid op-
erational tool product transfer, ensuring continuous characterization
and monitoring of our ecosystems.

Supplementary data to this article can be found online at https://

doi.org/10.1016/j.rse.2020.111753.
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