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Abstract
Aim: Changes in abundance and shifts in distribution as a result of a warming climate 
have been documented for many marine species, but opportunities to test our ability 
to forecast such changes have been limited. This study evaluates the ability of habi‐
tat-based density models to accurately forecast cetacean abundance and distribution 
during a novel year with unprecedented warm ocean temperatures caused by a sus‐
tained marine heatwave.
Location: California Current Ecosystem, USA.
Methods: We constructed generalized additive models based on cetacean sighting 
and environmental data from 1991 to 2009 for eight species with a diverse range of 
habitat associations. Models were built with three different sets of predictor variables 
to compare performance. Models were then used to forecast species abundance and 
distribution patterns during 2014, a year with anomalously warm ocean temperatures. 
Cetacean sighting data collected during 2014 were used to assess model forecasts.
Results: Ratios of model‐predicted abundance to observed abundance were close to 
1:1 for all but one species and accurately captured changes in the number of animals 
in the study area during the anomalous year. Predicted distribution patterns also 
showed good concordance with the 2014 survey observations. Our results indicate 
that habitat relationships were captured sufficiently to predict both changes in abun‐
dance and shifts in distribution when conditions warmed, for both cool‐ and warm‐
temperate species.
Main conclusions: Models built with multidecadal datasets were able to forecast 
abundance and distribution in a novel warm year for a diverse set of cetacean spe‐
cies. Models with the best explanatory power did not necessarily have the best pre‐
dictive power. Also, they revealed species‐specific responses to warming ocean 
waters. Results have implications for modelling effects of climate change on ceta‐
ceans and other marine predators.
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1  | INTRODUC TION

Changes in abundance and shifts in distribution as a result of a 
warming climate have been documented for many marine spe‐
cies (Hare et al., 2016; Laidre et al., 2008; Nye, Link, Hare, & 
Overholtz, 2009; Pinsky, Worm, Fogarty, Sarmiento, & Levin, 
2013; Poloczanska et al., 2016; Schumann, Gales, Harcourt, & 
Arnould, 2013; Walsh, Richardson, Marancik, & Hare, 2015), and 
substantial future shifts in marine species’ distributions have 
been predicted (Cheung, Brodeur, Okey, & Pauly, 2015; Hazen et 
al., 2013; Lambert et al., 2014; Learmonth et al., 2006; MacLeod, 
2009; Perry, Low, Ellis, & Reynolds, 2005). However, opportuni‐
ties to test our ability to forecast such changes have been limited, 
and there are inherent challenges predicting biological responses 
based on climate change projections (Hobday & Lough, 2011). 
Species distribution models (SDMs) have been used to predict the 
abundance and distribution of seabirds, fish, sea turtles and ceta‐
ceans, and to evaluate risk from human activities (Benson et al., 
2011; Forney, Becker, Foley, Barlow, & Oleson, 2015; Gilles et al., 
2016; Hammond et al., 2013; Leathwick, Elith, Francis, Hastie, & 
Taylor, 2006; Louzao et al., 2006; Oppel et al., 2012; Redfern et 
al., 2013; Redfern, Hatch, et al., 2017; Torres et al., 2015). SDMs 
developed for cetaceans in the California Current Ecosystem 
(CCE) have shown forecasting ability at time‐scales ranging from 
weeks (Hazen et al., 2016) to months (Becker et al., 2012), but the 
range of habitat covariate values for the forecast time were gen‐
erally within those used to build the predictive models. Evaluating 
the ability of SDMs to accurately capture responses of cetacean 
species during extended anomalous periods when conditions fall 
outside those represented in model development may help to stra‐
tegically focus efforts aimed at projecting responses to climate 
change (Silber et al., 2017).

In 2014, waters in the CCE became anomalously warm, often 
4°C above the climatological mean, as an unprecedented marine 
heatwave spread over the area (Bond, Cronin, Freeland, & Mantua, 
2015; Di Lorenzo & Mantua, 2016; Leising et al., 2015). Indices of cli‐
mate and ocean conditions in the northeast Pacific (e.g., Multivariate 
ENSO Index, Pacific Decadal Oscillation and North Pacific Gyre 
Oscillation) shifted in 2014 from conditions promoting high pri‐
mary productivity to warm, less productive conditions (Leising et al., 
2015). Large‐scale warming of the northeast Pacific began in 2013, 
reached record high temperatures in 2014–2015 and continued into 
2016 with the arrival of a strong El Niño (Jacox et al., 2016; Leising 
et al., 2015; McClatchie, Goericke, & Leising, 2016). In addition to 
the unusually warm ocean temperatures, dramatic changes in other 
physical and biological properties resulted in overall changes in eco‐
system structure, with notable responses documented for inverte‐
brates, fish, seabirds and marine mammal species (Bond et al., 2015; 
Cavole et al., 2016; Laake, Lowry, DeLong, Melin, & Carretta, 2018; 
Leising et al., 2015). The profoundly altered ocean conditions in the 
CCE from 2013–2016 provide a unique opportunity to evaluate 
the ability of SDMs to accurately predict changes in marine species 
abundance and distribution during a period with unusually warm 

ocean temperatures, and may increase our understanding of how 
warming waters affect mobile marine predators such as cetaceans.

NOAA’s Southwest Fisheries Science Center (SWFSC) has con‐
ducted systematic cetacean and ecosystem surveys in the CCE since 
1991, and fortuitously, the most recent survey was conducted in the 
summer and fall of 2014 during the anomalous conditions. To eval‐
uate the ability of SDMs to accurately predict cetacean abundance 
and distribution during this novel year, we developed predictive hab‐
itat‐based models of cetacean density based on seven SWFSC ship‐
board CCE surveys conducted during summer and fall between 1991 
and 2009. Models were built for eight taxonomically diverse spe‐
cies with varied habitat associations: short‐beaked common dolphin 
(Delphinus delphis delphis), northern right whale dolphin (Lissodelphis 
borealis), Pacific white‐sided dolphin (Lagenorhynchus obliquidens), 
striped dolphin (Stenella coeruleoalba), Dall’s porpoise (Phocoenoides 
dalli), blue whale (Balaenoptera musculus), fin whale (B. physalus) and 
humpback whale (Megaptera novaeangliae). These species also ex‐
hibit varied feeding strategies and their targeted prey span a range 
of trophic levels. For example, in the CCE, blue whales feed exclu‐
sively on euphausiids such as the krill species Euphausia pacifica and 
Thysanoessa spinifera (Croll et al., 2005; Fiedler et al., 1998). Both fin 
and humpback whales switch prey between krill and small schooling 
fish such as northern anchovy (Engraulis mordax) and Pacific sardine 
(Sardinops sagax) (Fleming, Clark, Calambokidis, & Barlow, 2016; 
Goldbogen et al., 2008; Goldbogen, Pyenson, & Shadwick, 2007; 
Piatt & Methven, 1992), while the odontocetes feed on a wide va‐
riety of squid and fish species (Pauly, Trites, Capuli, & Christensen, 
1998). Species that feed on prey spanning a wider range of trophic 
levels can exploit a broad range of biophysical conditions while for‐
aging, which may have implications for how they are impacted by 
climate warming (Cavole et al., 2016).

For each species, we built models with three different sets of 
habitat covariates based on their success in past SDMs and com‐
pared the three models’ explanatory ability using established met‐
rics. Species abundance and distribution patterns predicted by each 
model during the anomalously warm year 2014 were assessed using 
cetacean sighting data collected during 2014. The results are rele‐
vant for modelling climate change effects on marine predators and 
also provide novel insights into species‐specific responses to warm‐
ing ocean waters.

2  | METHODS

2.1 | Survey data

Cetacean sighting data used to build the SDMs were collected in 
the CCE during the summer and fall (July through early December) 
of 1991, 1993, 1996, 2001, 2005, 2008 and 2009 using systematic 
line‐transect methods (Buckland et al., 2001). The 1991–2008 sur‐
veys covered waters from the west coast of the United States to 
approximately 556 km offshore (Figure 1a; Barlow & Forney, 2007), 
while the 2009 survey focused on waters off Southern California 
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(Figure 1b; Carretta, Chivers, & Perryman, 2011). Transect lines were 
arranged in a systematic grid to provide even coverage of the sur‐
vey region over the course of each survey. The survey protocol was 
the same for all years (see Barlow & Forney, 2007; Kinzey, Olson, 
& Gerrodette, 2000). Research vessels travelled at approximately 
18.5 km/hr along predetermined transect lines. Two experienced 
observers searched with pedestal‐mounted 25X binoculars on the 
flying bridge of the ship; a third observer searched by eye or with 
hand‐held 7X binoculars and recorded cetacean sightings and survey 
conditions.

The 2014 survey was conducted from 5 August to 9 December 
and used the same methods as the 1991–2009 surveys, and transect 
coverage was roughly uniform throughout the study area (Barlow, 
2016; Figure 1c).

2.2 | Habitat covariates

Continuous portions of survey effort were divided into approximate 
5‐km segments to create samples for modelling using the approach 
described by Becker et al. (2010). Species‐specific sighting data 
were assigned to each segment (total number of sightings and aver‐
age group size), and habitat covariates were derived based on the 
segment’s geographical mid-point. To maintain consistency with the 
species‐specific effective‐strip‐width estimates derived by Barlow, 
Ballance, and Forney (2011) and used in this study to estimate ceta‐
cean densities, sighting data were truncated at a distance of 5.5 km 

perpendicular to the track line for the delphinids and large whales, 
and at 3.0 km for Dall’s porpoise (Buckland et al., 2001). Models 
were built with three different sets of predictor variables to com‐
pare their ability to predict changes in abundance and distribution 
during the novel year. Each set included a different combination of 
dynamic, bathymetric and geographic covariates as described below.

2.2.1 | Dynamic variables

Environmental variables from a data‐assimilative CCE implementa‐
tion of the Regional Ocean Modeling System (ROMS), produced by 
the University of California Santa Cruz Ocean Modeling and Data 
Assimilation group (Moore et al., 2011), were used as dynamic pre‐
dictors as they have proven effective in similar habitat models in this 
study area (Becker et al., 2016; 2017). We used daily averages for 
each variable served at the 0.1 degree (~10 km) horizontal resolution 
of the ROMS output. Given the broad temporal span of our survey 
data (1991–2014), we used output from both a historical reanalysis 
(1980–2010; Neveu et al., 2016) and a near‐real‐time data assimila‐
tion system (2011–present; Moore et al., 2013). These two systems 
differ in the specific data used and in assimilation details, but both 
provide data‐constrained state estimates for our study area. We 
limited the predictors to those consistent between the two sources 
(Becker et al., 2017): sea surface temperature (SST) and its standard 
deviation sd (SST), calculated for a 3 × 3‐pixel box around the model‐
ling segment mid‐point), mixed layer depth (MLD, defined by a 0.5°C 

F I G U R E  1   Completed transects for the Southwest Fisheries Science Center systematic ship surveys conducted between 1991 and 
2014 in the California Current Ecosystem study area. The green lines show on‐effort transect coverage in Beaufort sea states of 0–5 for (a) 
surveys conducted late July through early December in 1991, 1993, 1996, 2001, 2005 and 2008 off the US west coast, (b) a smaller scale 
survey conducted September through December of 2009 and (c) the 2014 survey conducted from 5 August to 9 December
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deviation from the SST), sea surface height (SSH) and sd(SSH). A sim‐
ple offset (+0.035 m) was applied to the near‐real‐time SSH data to 
match the historical reanalysis dataset, which had a different refer‐
ence level (Scales et al., 2017).

2.2.2 | Bathymetric variables

Bathymetric data were derived from the ETOPO1 1‐arc‐min global 
relief model (Amante & Eakins, 2009). Water depth (m) was obtained 
for the mid-point of each transect segment. The standard deviation 
in water depth, a proxy for seafloor slope, was calculated based 
on values within a 3 × 3‐pixel box around the modelling segment 
mid‐point.

2.2.3 | Alternative predictor sets

Three separate models were built for each species based on differ‐
ent combinations of predictor variables. The first included the full 
set of dynamic and bathymetric variables (“Model 1”; Table 1). These 
habitat covariates have been used successfully in previous SDMs in 
the study area (Becker et al., 2016, 2017 ).

The second set of predictors included the same variables as the 
first set but SST was replaced with a bivariate interaction term be‐
tween SST and latitude (“Model 2”; Table 1). Since the study area 
spans a range of latitudes, including temperate to subtropical and 
shallow to deep‐water habitats with water masses of different or‐
igins (McClatchie, 2014; Reid, Roden, & Wyllie, 1958), a bivariate 
SST:latitude predictor would account for these effects, and other 
modelling studies have used similar approaches to account for latitu‐
dinal temperature gradients within large study areas (Forney, 2000; 
Yuan et al., 2017).

The third model used an identical set of predictors as Model 1 
but included longitude and latitude as a bivariate term to explicitly 
account for geographical effects (“Model 3”; Table 1). The inclusion 
of a spatial interaction term prohibits predictions outside of the 
study area, but given the prevalence of longitude and latitude in 
many cetacean modelling studies (e.g., Cañadas & Hammond, 2008; 
Forney et al., 2015; Hedley & Buckland, 2004; Hedley, Buckland, & 
Borchers, 1999; Tynan et al., 2005; Williams, Hedley, & Hammond, 
2006), we included this set for comparison.

Year was also included as a potential predictor in all three mod‐
els to capture population trends for species whose abundance has 
changed substantially during the time period considered in our 
analyses, including fin whale (Moore & Barlow, 2011), humpback 
whale (Barlow, Calambokidis, et al., 2011), blue whale (Monnahan, 
Branch, & Punt, 2015) and short‐beaked common dolphin (Barlow, 
2016).

2.3 | Modelling framework

Generalized additive models (Hastie & Tibshirani, 1990) were 
developed in R (v. 3.3.2; R Core Team, 2014) using the package 
“mgcv” (v. 1.8–17; Wood, 2011). Methods largely followed those 
described in Becker et al. (2016), but we used different (daily 
rather than weekly) ROMS predictors that were consistently avail‐
able for the 2014 forecast. We used restricted maximum likeli‐
hood (REML) to optimize the parameter estimates and a variable 
selection process that uses a shrinkage approach to modify the 
smoothing penalty, allowing the smooth to be identically zero and 
removed from the model (Marra & Wood, 2011). To ensure that 
models were not overfit, we also removed variables that had p‐
values > 0.05, and then refit the models to ensure that all remain‐
ing variables had p‐values < 0.05 (Redfern, Moore, et al., 2017; 
Roberts et al., 2016).

We used two different species‐specific modelling frameworks, 
depending on group size characteristics. For large whales and Dall’s 
porpoise, species that generally occur in small groups, we fit a single 
response model using the number of individuals per transect seg‐
ment as the response variable and a Tweedie distribution to account 
for overdispersion (Miller, Burt, Rexstad, Thomas, & Gimenez, 2013). 
For the delphinids, species that occur in groups with large and vari‐
able sizes, we fit separate encounter rate and group size models. All 
transect segments were used to build the encounter rate models, 
using the number of sightings per segment as the response variable 
with a Tweedie distribution. Group size models were built using only 
those transect segments that included sightings, using the natural log 
of group size as the response variable and a Gaussian link function. 
Geographical differences in group size have been observed for many 
delphinids (Barlow, 2015; Cañadas & Hammond, 2008; Ferguson, 
Barlow, Fiedler, Reilly, & Gerrodette, 2006), so we modelled group 
size using a tensor product smooth of longitude and latitude for use 
in density estimation (Wood, 2003). For both the single response 
and encounter rate models, the natural log of the effective area 
searched (described below) was included as an offset to account for 

TA B L E  1   Potential predictor variables offered in each of the 
three models developed for each species considered in this analysis

Predictors Model 1 Model 2 Model 3

Dynamic

Sea surface temperature 
(SST)

X X

Standard deviation of SST 
(sdSST)

X X X

Mixed layer depth (MLD) X X X

Sea surface height (SSH) X X X

Standard deviation of SSH 
(sdSSH)

X X X

SST with spatial effect 
(SST:LAT)

X

Bathymetric

Depth X X X

Slope X X X

Static

Latitude (LAT) X

Longitude (LON) X
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both varying segment lengths and the different detection conditions 
recorded during the surveys.

Density (D; number of animals per km2) was estimated by incor‐
porating the model results into the standard line‐transect equation 
(Buckland et al., 2001):

where i is the segment, n is the number of sightings, s is the aver‐
age group size, and A is the effective area searched:

where L is the length of the effort segment, ESW is the effec‐
tive strip half‐width, and g(0) is the probability of detection on 
the transect line. Following the methods of Becker et al. (2016), 
species‐specific and segment‐specific estimates of both ESW 
and g(0) were incorporated into the models based on the re‐
corded detection conditions on that segment using coefficients 
estimated by Barlow, Ballance, et al. (2011) for ESW and Barlow 
(2015) for g(0).

For each species, models built with the three different sets of 
predictor variables were used to predict density for distinct daily 
averages of environmental conditions for each 1991–2009 survey 
day. The separate daily 10‐km resolution grid predictions were 
then averaged to produce spatially explicit grids of mean species 
density and measures of uncertainty. The final prediction grids 
thus account for the varying oceanographic conditions during the 
1991–2009 summer/fall SWFSC cetacean surveys and provide a 
“multiyear average” of predicted daily cetacean species densities. 
Given that the greatest source of uncertainty in these models is 
the interannual variability in population density due to movement 
of animals within or outside of the study area (Barlow et al., 2009; 
Boyd et al., 2018; Ferguson et al., 2006), this source of uncertainty 
was used to produce lognormal 90% confidence intervals for the 
spatial density estimates (Forney et al., 2012). We clipped the 
prediction grid to the boundaries of the approximate 1,141,800‐
km2 study area to ensure that predictions were not extrapolated 
outside the region used for model development, particularly since 
longitude and latitude were included as potential predictors in one 
of the three alternative models.

2.4 | Model comparison

We used a variety of established metrics to compare the perfor‐
mance of the models built with the three different sets of predic‐
tors, including Akaike’s information criterion (AIC; Akaike, 1973), 
REML score, the percentage of explained deviance, root‐mean‐
squared error (RMSE), ratios of observed to predicted density, and 
visual inspection of predicted and observed distributions during the 
1991–2009 SWFSC cetacean surveys (Barlow et al., 2009; Becker 
et al., 2010, 2016 ; Forney et al., 2012). Each of these models was 
then used to predict on daily 10‐km resolution grids of environmen‐
tal conditions during the 2014 SWFSC survey and averaged as de‐
scribed above for the 1991–2009 models to produce a final 2014 
prediction. A previous study estimated how species abundance 
changed from 1996 to 2014 based on the same survey data used 
here (Barlow, 2016; Table 2). To assess the models’ 2014 forecast 
ability, we compared overall study area ratios of observed to pre‐
dicted density in light of the major changes noted by Barlow (2016) 
and inspected predicted 2014 distribution patterns as compared to 
the 2014 survey observations. While we can make predictions using 
all three models, in a true forecast situation, we do not know be‐
forehand which will have the best predictive ability on a future year. 
This mock forecast (i.e., simulated forecast of a past event) provided 
a unique opportunity to help us understand issues associated with 
a true forecast, for example, when a model with relatively high ex‐
planatory power (i.e., model goodness‐of‐fit) might have relatively 
low predictive power (i.e., performance on a novel dataset), and vice 
versa.

3  | RESULTS

SST values during the 2014 survey reflected the unusually warm 
ocean conditions that prevailed throughout the study area during the 
2013–2016 marine heatwave, as has been documented elsewhere. 
The average SST in our 2014 modelling dataset was 18.4°C, as com‐
pared to the 16.7°C average (range = 16.0–17.5°C) for the seven 
surveys conducted from 1991 to 2009, and study area‐wide, daily 
SST values were as high as 24.6°C during the 2014 survey period 
(Table 3).

(1)Di=

ni ⋅ si

Ai

(2)Ai=2 ⋅Li ⋅ESWi ⋅g
(

0
)

i

Species 1996–2008 range 1996–2008 average 2014 estimate

Short‐beaked common 
dolphin

465,341–693,117 593,840 1,427,576

Northern right whale dolphin 12,916–41,981 25,346 54,604

Pacific white‐sided dolphin 16,259–58,438 30,614 24,077

Striped dolphin 8,614–61,107 26,983 90,433

Dall's porpoise 27,885–57,265 40,269 21,976

Blue whale 878–2,936 1,563 1,496

Fin whale 4,795–8,247 6,361 9,892

Humpback whale 1,295–1,742 1,493 3,064

TA B L E  2   Abundance estimates from 
Barlow (2016) based on the 1996, 2001, 
2005, 2008 and 2014 survey data also 
used in this study



     |  631BECKER et al.

For all species, models built with the 1991–2009 survey data 
and three different sets of predictor variables exhibited similar ex‐
planatory performance based on the comparison metrics (Table 4). 
Functional plots for the habitat variables common among the three 
model types were also generally consistent (see Figure S1.1 in 
Appendix S1 in Supporting Information). The percentage of ex‐
plained deviance varied the most among the three species‐specific 
models and tended to be higher for Models 2 and 3 (Table 4). Model 
3 exhibited the best overall explanatory performance for five of the 
eight species and Model 2 for the remaining three species (Table 4).

For all species, the multiyear average density predictions from 
the best models captured observed distribution patterns as indi‐
cated by actual sightings during the 1991–2009 surveys (Figure 2). 
The areas of highest predicted densities varied among species, re‐
flecting ecological differences within the broad study area (Figure 2). 
The upper 90% confidence interval plots for some species revealed 
major differences from the average density predictions (e.g., Dall’s 
porpoise, fin whale), while others were more similar (e.g., striped dol‐
phin, humpback whale).

Despite the similarity of the three different models’ explana‐
tory performance, their ability to predict density during the novel 
2014 year varied substantially, particularly for blue and humpback 
whales (Table 5). For five of the eight species, the models with the 
best explanatory performance were also those that most accurately 
predicted study area abundance during the novel year (Table 5). 
For short‐beaked common dolphin, Pacific white‐sided dolphin and 
striped dolphin, models that included longitude and latitude showed 
the best explanatory power for 1991–2009; however, models with‐
out these static terms exhibited superior performance when fore‐
casting on the 2014 anomalous environmental conditions (Table 5).

With the exception of striped dolphin, the best models’ 2014 
abundance predictions were within approximately 20% of esti‐
mates based on the observed data, with observed‐to‐predicted 
density ratios ranging from 1.02 to 1.22 (Table 5). The most accu‐
rate density prediction (1.02 ratio) was for short‐beaked common 

dolphin, whose 2014 abundance in the study area more than 
doubled in comparison with past line‐transect estimates (Barlow, 
2016; Table 2). This increase in abundance likely reflects an influx 
of short‐beaked common dolphins into the study area, as inter‐
annual shifts in distribution with changing ocean conditions have 
been documented previously (Anganuzzi, Buckland, & Cattanach, 
1993; Forney, 2000; Forney & Barlow, 1998; Forney et al., 2012; 
Heyning & Perrin, 1994). The dynamic short‐beaked common dol‐
phin model captured this influx quite well as is evident from the 
2014 density plot that shows high predictions throughout major 
portions of the study area compared to the 1991–2009 average 
(Figure 3a). In contrast, the best model‐predicted abundance es‐
timate for striped dolphin was approximately half the estimate 
based on observed data (Table 5). The line‐transect abundance 
estimate for striped dolphin in 2014 was more than three times 
higher than the 1996–2008 average (Table 2), and 10 times higher 
than the 2008 estimate (Barlow, 2016). All three models for this 
species underestimated the substantial influx of animals into the 
study area in 2014 by a factor of 2–3 (Table 5).

The best predictive models also were able to capture the sub‐
stantial shifts in species distribution patterns observed during 
the 2014 warm year, when the distributions of cool‐temperate 
species such as northern right whale dolphins, Pacific white‐sided 
dolphins and Dall’s porpoise generally shifted northward and/or 
contracted (Figure 3b, c and e). For example, in 2014, there were 
no northern right whale dolphin sightings south of 40°N, while in 
1991–2009, there were multiple sightings of this species in the 
southern portion of the study area. The best model captured this 
northward shift in 2014, with highest densities predicted in the 
northern portions of the study area and zero to very low densi‐
ties in the south (Figure 3b). The 2014 distribution of Dall’s por‐
poise contracted from the 1991–2009 average, with the highest 
concentration of animals predicted between approximately 39°N 
and 43°N, as compared to the more widespread distribution ex‐
hibited in previous years (Figure 3e). The 2014 distribution of 
Pacific white‐sided dolphin also contracted from the 1991–2009 
average, with lower concentrations of animals throughout the 
study area with the exception of a few small areas between ap‐
proximately 39°N and 42°N, and much lower densities predicted 
south of 37°N, consistent with the 2014 observations (Figure 3c).

Northward distribution shifts were also observed for warm‐tem‐
perate/tropical species in 2014, with sightings of both short‐beaked 
common and striped dolphins north of 42°N, not typical of 1991–
2009 observations, and the best models for both species predicted 
density to be higher north of 40°N as compared to previous years 
(Figure 3a,d).

The 2014 predicted distribution patterns for both blue and 
fin whales were generally similar to the 1991–2009 average, but 
changes in absolute density were markedly different for the two 
species, as is clearly evident from the difference plots (Figure 3f,g). 
In 2014, there were lower concentrations of blue whales predicted 
throughout the study area with the exception of an area offshore 
of Monterey Bay (approximately 37°N) and along the coast in the 

TA B L E  3   Mean, minimum (min) and maximum (max) SST values 
in °C for the modelling segments used in this study by survey year. 
Also shown are values based on the daily study area grid cells used 
for the novel 2014 predictions. Region indicates survey location 
(refer to Figures 1 and 2)

Year Region Mean SST Min SST Max SST

1991 CA 16.9 10.6 19.9

1993 CA 17.5 12.8 21.6

1993 CA/OR/WA 16.8 9.9 22.8a

2001 CA/OR/WA 16.0 10.2 20.5

2005 CA/OR/WA 16.0 10.5 20.9

2008 CA/OR/WA 16.1 9.4 20.2

2009 SOCAL 17.4 12.8 21.4

2014 CA/OR/WA 18.4 12.1 22.9

2014 (pixels) CA/OR/WA 18.4 9.4 24.6

aThere was one segment with 23.18°C. 
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F I G U R E  2   Predicted densities and uncertainty measures from the 1991–2009 habitat‐based density models for (a) short‐beaked common 
dolphin, (b) northern right whale dolphin, (c) Pacific white‐sided dolphin, (d) striped dolphin, (e) Dall's porpoise, (f) blue whale, (g) fin whale and 
(h) humpback whale. Panels show the multiyear average (AVE) density based on predicted daily cetacean species densities covering the survey 
periods (summer/fall 1991–2009), as well as the standard deviation of density (SD), and the 90% confidence limits (Low 90% and High 90%). 
Density ranges were selected to encompass all values within the confidence limits. Predictions are shown for the study area (1,141,800‐km2). 
Black dots in the average plots show actual sighting locations from the SWFSC summer/fall ship surveys for the respective species. The abrupt 
discontinuity that runs east–west at 40°N that appears in many of the multiyear average density and uncertainty plots reflects the location of the 
Mendocino Escarpment, a bathymetric feature evident in the majority of the models that included depth or slope as significant predictors

(a)

(b)

(c)

(d)
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Southern California Bight, particularly south of Point Conception 
(approximately 34.5°N; Figure 3f). In contrast, higher densities of 
fin whales were predicted both within the Southern California Bight 
and along the shelf north of Point Conception and offshore of about 

40°N (Figure 3g). The predicted 2014 study area decrease in blue 
whale abundance and increase in fin whale abundance are consistent 
with both line‐transect (Barlow, 2016; Table 2) and model‐predicted 
density estimates (Table 5).

(e)

(f)

(g)

(h)

F I G U R E  2   Continued
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Study area 2014 abundance estimates for humpback whales 
were higher than estimates based on past survey efforts (Barlow, 
2016; Table 2) and the best model successfully predicted the 
documented population increase (observed‐to‐predicted den‐
sity ratio = 1.15). The 2014 line‐transect abundance estimate 
for humpback whale was substantially higher than past esti‐
mates (Table 2), and while their distribution pattern was similar 
from 1991–2009 to 2014, model‐predicted densities were much 

higher in 2014, particularly off Monterey Bay and San Francisco 
(Figure 3h).

4  | DISCUSSION

The unusual ocean conditions during the 2013–2016 marine heat‐
wave offered a unique opportunity to examine the performance 

TA B L E  4   Summary of the final encounter rate (delphinids) or single response (Dall's porpoise and large whales) models built with the 
1991–2009 survey data

Species Predictor variables REML Exp.Dev. AIC RMSE Obs:Pred

Short‐beaked common dolphin

Model 1 SST + sd(SST) + SSH + Depth + Year 1979.2 0.86 17215.20 0.2202 1.0456

Model 2 SST:LAT + SSH + Year 1891.1 4.70 18376.92 0.2194 1.0127

Model 3 SST + SSH + MLD + Year + LON:LAT 1880.8 6.41 17818.10 0.2192 0.9891

Northern right whale dolphin

Model 1 SST + Depth 450.6 12.30 14887.34 0.0850 0.9742

Model 2 SST:LAT + Depth 451.1 12.40 14894.01 0.0849 1.0030

Model 3 SST + LON:LAT 456.1 10.10 14861.96 0.8516 0.9780

Pacific white‐sided dolphin

Model 1 SST + SSH + Depth 530.2 15.70 14830.52 0.0989 0.8465

Model 2 SST:LAT + SSH + Depth 529.1 17.10 14885.66 0.0987 0.8664

Model 3 SST + Depth + LON:LAT 521.4 17.70 14898.61 0.0988 0.9544

Striped dolphin

Model 1 SST + Depth 469.8 0.47 13933.71 0.0856 1.0782

Model 2 SST:LAT + Depth 462.6 2.66 13896.04 0.0855 1.0342

Model 3 SST + Depth + LON:LAT 465.7 2.80 13895.05 0.0854 1.0238

Dall's porpoise

Model 1 SST + sd(SST) + SSH + sd(SSH) + Depth + Slope 2694.2 33.5 16523.6 1.0539 0.9473

Model 2 SST:LAT + SSH + Depth + Slope 2637.2 40.5 16513.6 1.0363 0.9572

Model 3 SST + SSH + sd(SSH) + LON:LAT 2641.3 37.3 16501.8 1.0476 0.9419

Blue whale

Model 1 SST + SSH + Depth + Slope + Year 1489.6 11.60 15308.82 0.2575 0.9506

Model 2 SST:LAT + SSH + MLD + Depth + Year 1447.3 18.00 15309.16 0.2564 0.9582

Model 3 SST + SSH + MLD + Depth + Year + LAT:LON 1440.0 20.40 15311.88 0.2564 0.9613

Fin whale

Model 1 SST + SSH + MLD + Depth + Year 2,196.1 5.33 15823.57 0.5092 0.8790

Model 2 SST:LAT + SSH + MLD + Depth + Year 2048.6 24.00 15755.92 0.5039 1.0305

Model 3 SST + SSH + MLD + Depth + Year + LON:LAT 2135.6 14.50 15804.82 0.5096 0.8897

Humpback whale

Model 1 SST + SSH + sd(SSH) + Depth + Slope + Year 1321.1 40.60 15311.86 0.3494 0.9592

Model 2 SST:LAT + Depth + Slope + Year 1258.0 48.10 15275.43 0.3388 0.9736

Model 3 sd(SSH) + Depth + Year + LON:LAT 1240.7 50.10 15267.08 0.3381 0.9700

Note. Variable abbreviations are as follows: SST: sea surface temperature; sd(SST): standard deviation of SST; MLD: mixed layer depth; SSH: sea surface 
height; sd(SSH): standard deviation of SSH; depth: bathymetric depth; slope: bathymetric slope; LON: longitude and LAT: latitude. All models were cor‐
rected for effort with an offset for the effective area searched, and the large whale and short‐beaked common dolphin models also included a year 
covariate that captured their change in abundance during the 1991–2009 survey years (see text for details). Comparative performance metrics included 
restricted maximum likelihood (REML), percentage of explained deviance (Exp.Dev.), Akaike’s information criterion (AIC), root‐mean‐squared error 
(RMSE) and the ratio of observed to predicted density for the study area (Obs:Pred). The best metrics and best model (based on overall metric values) 
are highlighted in grey.
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of SDMs for cetaceans in the CCE during novel habitat conditions 
(Table 3). The three different types of models examined in our study 
varied in their explanatory and predictive capabilities, providing in‐
sights and guidance for the development of robust marine‐species 
SDMs in a changing climate. Below we provide details on the mod‐
els’ performance relative to the ecology of the species included in 
our study.

4.1 | Model comparison: explanatory performance

The 1991–2009 average density predictions captured observed 
distribution patterns and had generally good performance metrics 
(Table 4), similar to models developed by Becker et al. (2016). Model 
1 (dynamic/bathymetric variables only), which included similar co‐
variates to previous models that have been validated extensively 
(Barlow et al., 2009; Becker et al., 2012, 2014 ; Calambokidis et al., 
2015; Forney et al., 2012), was not selected as the best explanatory 
model for any of the species considered here. This suggests that the 
spatial interaction terms included in both Models 2 and 3 picked up 
additional unexplained variance that resulted in improved perfor‐
mance metrics relative to Model 1.

The Model 1 functional plots for short‐beaked common 
dolphin, blue whale and fin whale showed distinct bimodal dis‐
tributions for water depth (see Figure S1.1 in Appendix S1 in 
Supporting Information). Although bimodality can suggest sepa‐
rate ecotypes for a given species, it can also suggest prey switch‐
ing or the ability to exploit multiple niches, for example, blue 
whales feed on Thysanoessa spinifera in shallow environments 
(<100 m water depth) and Euphausia pacifica in shelf‐edge and 
open‐ocean environments. In the absence of genetic data, we 
cannot presently determine whether indeed we are modelling 
separate ecotypes or providing evidence that these species have 
plastic distributions.

Model 2, which included the SST:latitude interaction term, pro‐
vided the best explanatory performance for northern right whale 
dolphin, Dall’s porpoise and fin whale. The interaction term serves 
as a proxy to account for potential latitudinal changes in the relation‐
ship between SST and species densities over the broad study area, 
which has previously been recognized as important for large study 
areas (Becker et al., 2016; Forney, 2000; Yuan et al., 2017).

Model 3, which included a spatial interaction term, had the high‐
est explained deviance for the other five species (Table 4), identify‐
ing fixed geographical patterns in the distributions of these species. 
This result was expected because models that include longitude and 
latitude can improve explanatory performance in SDMs (Hedley & 
Buckland, 2004; Hedley et al., 1999; Tynan et al., 2005); however, 
they do not necessarily increase our understanding of dynamic spe‐
cies–environment relationships (Becker et al., 2016; Wood, 2006) or 
allow for accurate predictions outside of the original covariate space 
or study area. Therefore, we expected that Model 3 would not be 
able to capture large shifts in species distributions resulting from the 
unusually warm conditions.

4.2 | Model comparison: predictive performance

For three species (short‐beaked common, Pacific white‐sided and 
striped dolphins), Model 3 exhibited the best explanatory perfor‐
mance but had the poorest performance when predicting on the 
anomalous environmental conditions, and substantially underes‐
timated the absolute number of animals in the study area in 2014 
(Table 5). For short‐beaked common and striped dolphins, two 
warm‐temperate/tropical species whose distributions shifted north‐
ward during 2014, Model 3 was not able to capture the additional 
influx of animals into the study area, most likely due to the static 
spatial term. For both of these species, Model 1 (dynamic/bathym‐
etric variables only) predicted the absolute 2014 abundance most 

TA B L E  5   Model comparison based on the overall metrics presented in Table 4 for the 1991–2009 models and their ability to accurately 
predict study area abundance for the novel year (2014). The Observed:Predicted (Obs:Pred) 2014 Density Ratios reflect total study area 
density values. Model‐based abundance values were calculated as the sum of the individual model‐predicted grid cell abundances 
throughout the study area based on the model with the best 2014 density ratio. Differences in the model‐based abundance estimates 
shown here and the Barlow (2016) line‐transect estimates shown in Table 2 are due to methodological differences

Species
Best 1991–2009 
model

Obs:Pred 2014 density ratio Model‐based abundance

Model 1 Model 2 Model 3 1991–2009 mean 2014 pred

Short‐beaked common 
dolphin

Model 3 1.02 1.28 1.48 381,936 1,136,133

Northern right whale 
dolphin

Model 2 1.14 1.05 1.13 23,192 39,770

Pacific white‐sided dolphin Model 3 1.30 1.15 1.86 47,339 41,602

Striped dolphin Model 3 2.10 2.95 3.11 18,478 32,373

Dall's porpoise Model 2 1.38 1.22 1.37 41,130 38,499

Blue whale Model 3 3.17 2.56 1.17 1,451 1,049

Fin whale Model 2 0.75 1.05 0.78 4,592 11,156

Humpback whale Model 3 6.19 4.71 1.15 1,231 2,220

Note. Bold indicates the best model predictive performance.
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F I G U R E  3   Predicted mean densities from the 1991–2009 habitat‐based density models compared to novel 2014 summer/fall density 
predictions for (a) short‐beaked common dolphin, (b) northern right whale dolphin, (c) Pacific white‐sided dolphin, (d) striped dolphin, (e) Dall's 
porpoise, (f) blue whale, (g) fin whale and (h) humpback whale. Panels show the multiyear average (Average) density based on predicted daily 
cetacean species densities covering the survey periods for summer/fall (July–November, 1991–2009). Density ranges are those selected for the 
1991–2009 period and are kept the same for 2014 to emphasize differences. Predictions are shown for the study area (1,141,800‐km2). Black dots 
show actual sighting locations from the summer/fall 1991–2009 and 2014 ship surveys, respectively. The difference between the predicted 2014 
and 1991–2009 average density values (i.e., 2014 minus [1991–2009]) is shown in the third panel. Blues represent predicted 2014 density values 
that were lower than the 1991–2009 average (i.e., <0), light yellow represents density values that were similar to the 1991–2009 average, and 
reds represent density values that were substantially higher than the 1991–2009 average
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F I G U R E  3   Continued
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accurately, particularly for short‐beaked common dolphin (Table 5). 
Model 1 not only captured the northern shift in distribution of short‐
beaked common dolphins, but was also able to forecast the higher 
densities within the study area (Figure 3a).

Model 1 also had the best predictive performance for striped 
dolphin, but all three models for this species severely underesti‐
mated the substantial influx of animals into the study area in 2014 
(Table 5). There is high interannual variability in the abundance of 
striped dolphin within the study area, ranging from a low of 8,614 
animals (CV = 0.51) in 1996 to the most recent estimate of 90,433 
animals (CV = 0.24) in 2014; the previous high was 61,107 animals 
(CV = 0.46) in 2005, when ocean conditions were also warm in the 
CCE (Barlow, 2016; Peterson et al., 2006). Although Model 1 included 
a linear SST function (see Figure S1.1.D in Appendix S1 in Supporting 
Information), which should have captured the increase in the number 
of striped dolphins in 2014, the overall predictions were too low. 
This could indicate that the magnitude of the species–environment 
response for striped dolphins changed during 2014, similar to the 
pattern identified by Boyd et al. (2018) for Dall’s porpoise when the 
amount of suitable habitat within the study area changed substan‐
tially. Our study area represents the northern portion of the range of 
striped dolphin (Mangels & Gerrodette, 1994; Perrin, Scott, Walker, 
& Cass, 1985), and the unusually warm water temperatures in 2014 
may have increased the available striped dolphin habitat markedly, 
changing the nature of the species–environment relationship within 
our study area. Such plasticity and the corresponding impact on ab‐
solute animal densities can create challenges when forecasting using 
SDMs under changing climate scenarios.

The distributions of three cool‐temperate species (northern 
right whale dolphin, Pacific white‐sided dolphin and Dall’s porpoise) 
all shifted north and/or contracted during the warm conditions in 
2014, and the best model for each species was able to capture these 
changes (Figure 3b,c,e), as well as predict absolute density to within 
about 5%–20% of what was observed (Table 5). Interestingly, the 
2014 estimated change in abundance from the 1996–2008 average 
varied among these three species; for northern right whale dolphin 
it was more than twice the average, for Pacific white‐sided dolphin 
it was about 20% lower than the average, and for Dall’s porpoise it 
was more than half the average (Table 2; Barlow, 2016). For these 
three species, the best novel predictions were made by Model 2 
(SST:latitude interaction term), indicating that accounting for the 
spatial structure of a dynamic variable could be important when 
making forecasts during changing climate conditions (Rind, 1998).

Model 2 also made the best novel prediction for fin whale and 
predicted absolute density to within 5% of what was observed 
(Table 5). Although a large migratory species, fin whales occur 
year‐round off Southern California (Barlow, 1994; Campbell et 
al., 2015; Carretta, Forney, & Barlow, 1995; Dohl, Norris, Guess, 
Bryant, & Honig, 1980; Forney & Barlow, 1998). They also have 
large home ranges, fast travel speeds, and feed in both coastal and 
pelagic waters (Calambokidis et al., 2015; Falcone, Diehl, Douglas, 
& Calambokidis, ). Given their widespread distribution and more 
dynamic foraging behaviour, it is not surprising that Model 3 

(longitude:latitude interaction term) exhibited the worst predic‐
tions for the novel year.

Model 3 exhibited both the best explanatory and predictive per‐
formance for blue and humpback whales (Tables 4 and 5). For both 
species, predicted density estimates were within about 15% of what 
was observed, in contrast to the other two model types that under‐
estimated observed density by a factor of 2–6 (Table 5). For both 
species, overall distribution patterns in 2014 were similar to those 
observed during the 1991–2009 surveys, although the 2014 predic‐
tions show lower blue whale density throughout much of the study 
area and much higher humpback whale density off central California 
(Figure 3f,h). These predictions are consistent with abundance esti‐
mates derived from the 2014 survey data that indicate a decrease in 
blue whale abundance in the study area as compared to the 1996–
2009 average, and a more than doubling of estimated humpback 
whale abundance in 2014 (Table 2; Barlow, 2016). Blue and hump‐
back whales were the only species for which Model 3 made the best 
novel predictions, consistent with observations that these large mi‐
grators return to the same largely coastal foraging grounds every 
season, perhaps due to learned behaviour and/or the persistence 
of trophic hotspots (Baker et al., 2013; Barlow, Calambokidis, et al., 
2011; Calambokidis et al., 2008, 2015; Irvine et al., 2014; Santora et 
al., 2017).

4.3 | Did the models accurately predict changes 
in species abundance and distribution during an 
anomalously warm year?

For seven of the eight species considered in this study, the best pre‐
dictive models developed using 1991–2009 survey data successfully 
captured shifts in distribution and change in absolute abundance 
during an anomalously warm year. The average 2014 SST value was 
substantially higher than in 1991–2009 (Table 3), consistent with 
multiple studies that revealed dramatic changes in SST and other 
oceanic properties in 2014 (Bond et al., 2015; Cavole et al., 2016; 
Leising et al., 2015). The anomalously warm temperatures observed 
in 2014 are projected to be commonplace by the end of this cen‐
tury, as average SST is predicted to rise from 1 to 6°C by 2,100 
(Intergovernmental Panel on Climate Change, 2007; Rosenzweig 
et al., 2008). Thus, our findings have direct relevance for understand‐
ing the accuracy of SDMs under future climate change, though the 
mechanisms that drive species range shifts and abundance changes 
under gradual warming may be different from those experienced 
during transient events like the recent northeast Pacific warm anom‐
alies. One key finding is that the models with the best explanatory 
power did not necessarily have the best predictive power. In a study 
that used bio‐climatic envelope models to predict cetacean species 
occurrence, Lambert et al. (2014) found that models which produced 
accurate predictions of current species distributions failed to pre‐
dict changes in distribution patterns over time. This underscores the 
need to consider alternate model types that include static, dynamic 
and interaction terms when forecasting marine species distributions 
in a changing climate. Ensemble models (Araújo & New, 2007; Gritti, 



     |  639BECKER et al.

Gaucherel, Crespo‐Perez, & Chuine, 2013; Johnson & Omland, 
2004; Thuiller, Lafourcade, Engler, & Araújo, 2009) that include a di‐
versity of model types are more likely to capture potential outcomes 
and uncertainty.

Our results suggest that the more dynamic models are most 
successful at novel predictions for odontocetes and fin whale, while 
models that include longitude and latitude may be most successful 
for blue and humpback whales. That said, the inclusion of longi‐
tude or latitude in any species habitat model may ultimately limit 
its forecasting ability under potential climate change scenarios. For 
example, although it is unclear how trophic hotspots may respond 
to extreme climate changes, it is likely that upwelling patterns will 
change (Rykaczewski et al., 2015), and there could be shifts in the 
locations of such hotspots (Santora et al., 2017) and consequently 
the foraging grounds for blue and humpback whales.

Our study included a set of species that are dietary specialists 
(blue whales), others known to switch among prey (fin and hump‐
back whales), and odontocetes that feed on epipelagic and meso‐
pelagic fishes and squids. During the warm conditions in 2014, we 
might suspect that the warm‐temperate/tropical odontocete species 
would benefit from the influx of tropical prey, while the cool‐tem‐
perate species would do poorly as their temperate prey disappeared. 
However, abundance in 2014 increased for both warm‐temperate/
tropical (short‐beaked common and striped dolphins) and cool‐tem‐
perate (northern right whale dolphins) species. Abundance for the 
other cool‐temperate odontocetes (Pacific white‐sided dolphin and 
Dall’s porpoise) decreased, consistent with expectations (MacLeod, 
2009; Salvadeo, Lluch‐Belda, Gómez‐Gallardo, Urbán‐Ramírez, & 
MacLeod, 2006). The abundance of both fin and humpback whales 
increased substantially, while the abundance of blue whale de‐
creased, potentially due to the reliance of the latter species on krill. 
This finding is consistent with the Cavole et al. (2016) description of 
“winners and losers” that suggests the reduced populations of krill 
would negatively affect baleen whales; however, our results suggest 
that the concept is more complicated when considering diverse ceta‐
ceans at the species level, and deserves further study.

New periods of climatic and oceanic extremes could result in 
unexpected interactions, state changes in species–environment re‐
lationships, or changes in the intensity of the response (e.g., Boyd 
et al., 2018), and these could foil predictions in novel situations 
(Myers, 1998). For example, during the 1982–83 El Niño, the coastal 
stock of bottlenose dolphins (Tursiops truncatus) expanded its range 
northward into central California and has remained there ever since 
(Hansen & Defran, 1990; Wells et al., 1990). This is a process we 
cannot predict with our current habitat models, as the underlying 
relationships changed post‐El Niño, and we are explicitly modelling 
stable species–environment relationships. If indeed the intensity of 
the response of striped dolphins changed in 2014 as we suspect, our 
ability to accurately predict the large influx of this tropical species 
into the study area was compromised.

While our findings demonstrate the models’ ability to predict 
changes in distribution and abundance as temperatures increase, it 
would be useful to know if they can also predict what happens if 

temperatures decrease. While we are not able to address this in the 
current study, it warrants investigation, particularly since in addition 
to warming waters, climate change projections also include greater 
variation in ocean conditions (Rosenzweig et al., 2008), and thus pe‐
riods when temperatures may decrease.

This study shows promise for predicting changes in abundance 
and distribution of mobile marine predators during anomalously 
warm ocean conditions that are likely to become more common as 
the climate changes (Intergovernmental Panel on Climate Change, 
2007; Oliver et al., 2018; Rosenzweig et al., 2008). However, our 
predictive accuracy will likely be limited as ocean conditions devi‐
ate more and more from past conditions, particularly if underlying 
species–environment relationships or the intensity of species re‐
sponses change. These challenges underscore the utility of meth‐
ods such as those developed by Boyd et al. (2018) that can explicitly 
take such changes into account. It is also important to recognize the 
limitations of predictive models for use in marine spatial planning, 
because risk assessments, mitigation measures and designated ma‐
rine protected areas may no longer perform as intended (Hobday & 
Hartog, 2014; Hobday et al., 2018). For effective management, on‐
going studies of species distribution and abundance are imperative 
to allow habitat models to be updated, re‐evaluated and improved, 
and to allow a better understanding of ecosystem dynamics in a 
changing climate.
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