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Abstract
Aim: Advances in ecological and environmental modelling offer new opportunities 
for estimating dynamic habitat suitability for highly mobile species and supporting 
management strategies at relevant spatiotemporal scales. We used an ensemble 
modelling approach to predict daily, year‐round habitat suitability for a migratory 
species, the blue whale (Balaenoptera musculus), and demonstrate an application for 
evaluating the spatiotemporal dynamics of their exposure to ship strike risk.
Location: The California Current Ecosystem (CCE) and the Southern California Bight 
(SCB), USA.
Methods: We integrated a long‐term (1994–2008) satellite tracking dataset on 104 
blue whales with data‐assimilative ocean model output to assess year‐round habi‐
tat suitability. We evaluated the relative utility of ensembling multiple model types 
compared to using single models, and selected and validated candidate models using 
multiple cross‐validation metrics and independent observer data. We quantified the 
spatial and temporal distribution of exposure to ship strike risk within shipping lanes 
in the SCB.
Results: Multi‐model ensembles outperformed single‐model approaches. The final 
ensemble model had high predictive skill (AUC = 0.95), resulting in daily, year‐round 
predictions of blue whale habitat suitability in the CCE that accurately captured mi‐
gratory behaviour. Risk exposure in shipping lanes was highly variable within and 
among years as a function of environmental conditions (e.g., marine heatwave).
Main conclusions: Daily information on three‐dimensional oceanic habitats was 
used to model the daily distribution of a highly migratory species with high predic‐
tive power and indicated that management strategies could benefit by incorporating 
dynamic environmental information. This approach is readily transferable to other 
species. Dynamic, high‐resolution species distribution models are valuable tools for 
assessing risk exposure and targeting management needs.
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1  | INTRODUC TION

The ocean provides a diverse and extensive suite of ecosystem ser‐
vices, all of which ultimately depend on a functioning ecosystem. 
Management strategies that enable human activity while conserv‐
ing biodiversity remains a key challenge for ocean governance. 
Marine spatial planning implicitly addresses such trade‐offs and as 
such has become a valuable approach for regulating multiple ocean 
activities while achieving conservation targets (Foley et al., 2010; 
White, Halpern, & Kappel, 2012). However, marine spatial planning 
is often static, despite recognition that marine habitats tend to be 
highly dynamic and can shift in space on timescales of days to weeks 
(Checkley & Barth, 2009; Kavanaugh et al., 2016). Thus, static man‐
agement strategies do not account for shifting habitats or human 
activities and, importantly, offer only partial protection for highly 
mobile species (Dunn, Maxwell, Boustany, & Halpin, 2016; Hazen 
et al., 2018). Dynamic management has been identified as a poten‐
tial solution to this problem by allowing management decisions to 
be updated in space and time in response to changing environmen‐
tal or socioeconomic conditions (Lewison et al., 2015; Maxwell et 
al., 2015). In order to inform the ecological components of dynamic 
management, there is first a need to accurately describe the spatio‐
temporal distribution of species and populations (Foley et al., 2010).

Species distribution models (SDMs) are key tools for describ‐
ing species habitats and distributions across marine and terres‐
trial systems (Elith & Leathwick, 2009; Robinson, Nelson, Costello, 
Sutherland, & Lundquist, 2017). Species distribution modelling in‐
volves using statistical tools to relate species occurrence or abun‐
dance to spatiotemporal patterns of environmental variation (Elith 
& Leathwick, 2009). Though the designs, uses and applications of 
SDMs in ecology are diverse, two methodological advancements 
hold particular promise for dynamic ocean management.

First, while marine SDMs have typically used a single‐model 
type (Robinson et al., 2017), determining an appropriate modelling 
approach can be challenging given inherent trade‐offs in the statisti‐
cal methods available (Elith et al., 2006; Qiao, Soberón, & Peterson, 
2015). Multi‐model ensembles can reduce uncertainty by overcom‐
ing biases inherent in any one model type and providing a “consen‐
sus” approach to predictions (Araújo & New, 2007; Gritti, Duputié, 
Massol, & Chuine, 2013). Predictions generated from multi‐model 
ensembles can also be more accurate than those of single models 
(Marmion, Parviainen, Luoto, Heikkinen, & Thuiller, 2009; Oppel et 
al., 2012; Scales et al., 2015). As a result, ensemble model approaches 
are increasingly recommended for marine species distribution mod‐
elling (Jones & Cheung, 2014; Robinson et al., 2017), motivating fur‐
ther evaluation of their application to dynamic management.

Second, data‐assimilative ocean circulation models offer the op‐
portunity to better match species data to the underlying environ‐
mental processes at relevant spatiotemporal scales (Becker et al., 
2016; Brodie et al., 2018). There has been increasing attention paid 
in the marine realm to the spatiotemporal scales of environmental 
observations and their relevance to the scales of animal response 
(Mannocci et al., 2017; Scales et al., 2016). Frequently, there is a mis‐
match between the spatiotemporal resolution of species occurrence 
and the spatiotemporal resolution of environmental observations. 
Such mismatch can lead to incorrect inferences and increased un‐
certainty (Scales et al., 2016). Moreover, designing dynamic manage‐
ment strategies for highly mobile species often relies on up‐to‐date, 
or “real‐time,” estimates of species distributions (Laist, Knowlton, & 
Pendleton, 2014). Data‐assimilative ocean circulation models can 
help solve this mismatch by providing gapless environmental data, 
often with higher spatial or temporal resolutions than those of 
processed remotely sensed data (Becker et al., 2016; Brodie et al., 
2018). Ocean circulation models can also provide information about 
the vertical structure of the ocean that remotely sensed variables 
cannot, which can improve predictions of marine species’ distribu‐
tions (Brodie et al., 2018).

Blue whales (Baleanoptera musculus) are both a highly migratory 
species and a species of conservation concern, highlighting the need 
to understand their habitat use and exposure to potential anthropo‐
genic threats throughout their migrations. Blue whales are listed as 
Endangered under both the U.S. Endangered Species Act (1973) and 
the IUCN Red List of Threatened Species due to population deple‐
tion from commercial whaling (Reilly et al. 2008). In the Northeast 
Pacific, blue whales perform latitudinal migrations between tropi‐
cal wintering/breeding grounds and productive foraging grounds at 
higher latitudes in the California Current Ecosystem (CCE) (Bailey et 
al., 2009; Ballance, Pitman & Fiedler, 2006; Irvine et al., 2014; Mate, 
Lagerquist, & Calambokidis, 1999). While in the CCE, blue whales 
follow the spring and summertime progression of the availability 
of krill (Abrahms et al., 2019), their primary prey, and demonstrate 
temporal synchrony with krill availability (Croll et al. 2005; Fossette 
et al. 2017). While dynamic distribution data on krill are not avail‐
able at the requisite spatial and temporal scales of our study, previ‐
ous studies have shown that blue whale habitat in the CCE can be 
characterized by a combination of dynamic and static environmental 
characteristics, such as sea surface temperature, thermocline and 
seafloor depths and primary productivity (Becker et al., 2016; Hazen 
et al., 2017).

Though the eastern North Pacific blue whale population is re‐
covering (Monnahan, Branch, & Punt, 2014), mortality from ship 
strikes in the CCE remains a major management concern (Rockwood, 
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Calambokidis, & Jahncke, 2017). In particular, the Southern California 
Bight (SCB; from San Diego to Point Conception, ~33–34.5°N) is a 
hotspot for ship strikes due to the high spatial and temporal overlap 
between blue whale summer foraging hotspots and shipping vessels 
travelling to and from southern California's largest ports (Hazen et al., 
2017; Redfern et al., 2013; Rockwood et al., 2017). Currently, volun‐
tary seasonal slowdowns are the only tool used to manage ship strike 
risk in this region (Rockwood et al., 2017). The existence of multiple 
shipping lanes for marine traffic offers potential opportunity for redi‐
recting vessels based on strike risk (Redfern et al., 2013), but existing 
blue whale models for the region are either limited by partial temporal 
coverage (Becker et al., 2018) or by coarse resolution (Hazen et al., 
2017). In addition to better matching the timescales of species occur‐
rences, finer scale distribution estimates may be better able to inform 
dynamic management decisions in the SCB given the migratory be‐
haviour of blue whales (Bailey et al., 2009) and the variable biophysical 
conditions in the CCE (Checkley & Barth, 2009).

We used a multi‐year (1994–2008) satellite tracking dataset on 
104 blue whales along with data‐assimilative ocean model output 
to develop a daily, year‐round distribution model for blue whales in 
the CCE. We evaluated the utility of using multi‐model ensembles 
relative to single‐model approaches and used the largest compilation 
of independent blue whale sightings datasets to date to select and 
validate our final species distribution model. Finally, we quantified 
the spatial and temporal distribution of exposure to ship strike risk 
within shipping lanes in the SCB.

2  | METHODS

2.1 | Movement data

Argos‐linked satellite tags were deployed between 1994 and 2008 
on 104 blue whales off of the Costa Rica Dome (N = 2), the Gulf of 
California (N = 3), the Santa Barbara Channel (N = 66) and northern 
California coast (N = 33) (Bailey et al., 2009; Hazen et al., 2017; Irvine 
et al., 2014). Duration of tracks averaged 101 ± 85 days (mean ± SD). 
All tracks were filtered for errors and smoothed to provide daily 
position estimates using a Bayesian switching state‐space model 
(Bailey et al., 2009; Jonsen, Flemming, & Myers, 2005), resulting in 
10,603 daily locations (Figure S1). Information on tag types and de‐
ployment duration is available in Bailey et al. (2009).

Because presence–absence models outperform presence‐only 
models for species distribution modelling (Elith et al., 2006), use 
of artificial absence data (i.e., “pseudo‐absences”) is recommended 
when true absence data are unavailable (Barbet‐Massin, Jiguet, 
Albert, & Thuiller, 2012). To analyse habitat suitability in a pres‐
ence–absence framework, we generated pseudo‐absences following 
Hazen et al. (2017) by simulating 200 correlated random walks per 
whale track using empirical step‐length and turn‐angle distributions 
(Kareiva & Shigesada, 1983). This approach enabled matching   the 
error structures of pseudo‐absences and empirical movement data 
(Hazen et al., 2017; Jonsen et al., 2005; Scales et al., 2016; Willis‐
Norton et al., 2015). A flag value was assigned to each simulated 

track indicating its similarity to the empirical track based on distance 
and net angular displacement from the empirical track (Hazen et al., 
2017; Willis‐Norton et al., 2015). To ensure simulated tracks repre‐
sented areas accessible to the whales, only simulated tracks in the 
upper 75th percentile of flag values were used for comparison (see 
Hazen et al., 2017 for detail). Two simulated tracks per empirical 
track were selected at random for inclusion in further analyses, re‐
sulting in 21,328 pseudo‐absence points compared to 10,603 pres‐
ences (Barbet‐Massin et al., 2012; Figure S2).

2.2 | Environmental data

Presence and pseudo‐absence data were matched to dynamic sur‐
face and subsurface environmental variables as well as to static sea‐
floor relief variables. Variables were examined based on hypothesized 
drivers of habitat and those shown to be significantly associated with 
blue whale space use (Becker et al., 2016, 2018; Hazen et al., 2017). 
Daily environmental data at 0.1° resolution were sourced from his‐
torical and near‐real‐time data‐assimilative versions of the Regional 
Ocean Modelling System (ROMS) configured for the CCE (Moore et 
al., 2013; Neveu et al., 2016) (obtained from oceanmodeling.ucsc.
edu). Dynamic surface variables examined were sea surface tempera‐
ture (SST), SST standard deviation (SST_sd), sea surface height (SSH), 
SSH standard deviation (SSH_sd), eddy kinetic energy (EKE) and 
wind stress curl. Dynamic subsurface variables were isothermal layer 
depth (ILD), similar to mixed layer depth and defined by a 0.5˚C devia‐
tion from the SST, and bulk Brunt Väisälä frequency (BVF), a measure 
of stratification averaged over the upper 200 m of the water column. 
In addition, the following static seafloor relief variables were sourced 
from ETOPO1 (obtained from https​://www.ngdc.noaa.gov/mgg/
globa​l/global.html; 0.1‐degree resolution): bathymetry (z), standard 
deviation of bathymetry (z_sd), slope and aspect. Standard deviations 
of SST, SSH and bathymetry for each location were calculated using 
a 1° radius centred on that location. Our study area was matched to 
the ROMS model domain (30 to 48°N and from the coast to 134°W).

2.3 | Species distribution modelling

Given potential differences in explanatory power and predictive skill 
(Derville, Torres, Iovan, & Garrigue, 2018; Fiedler et al., 2018), spe‐
cies distribution models were built using both Generalized Additive 
Mixed Models (GAMMs; “mgcv” R package) (Wood, 2017) and Boosted 
Regression Trees (BRTs; “dismo” R package) (Elith, Leathwick, & Hastie, 
2008). Because seasonality in migratory behaviour has been shown to 
influence blue whale environmental preferences (Hazen et al., 2017), for 
both GAMMs and BRTs we explored year‐round models as well as sep‐
arate models for each migratory season (summer/fall—July–November; 
winter/spring—December–June). GAMMs were fitted using the bino‐
mial family and a logit link function, with individuals nested as a random 
effect. A tensor product smooth between latitude and longitude was 
explored as predictors in GAMMs to account for spatial autocorrelation 
(Becker et al., 2018). A latitudinal interaction term with SST was also 
considered in the GAMMs to account for the latitudinal temperature 
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gradient over the study area (Becker et al., 2018). Multiple candidate 
GAMM models were generated based on published and hypothesized 
predictor variable combinations (Becker et al., 2016; Hazen et al., 2017) 
and were initially evaluated using the Area Under the receiver operat‐
ing Curve (AUC; Table S1) before selecting the top three GAMMs for 
further model evaluation. AUC statistics discriminate between true‐
positive and false‐positive rates, and range from 0 to 1, where a score 
of >0.5 indicates better than random discrimination (Hanley & McNeil, 
1982). Generalized variance inflation factors were used to ensure any 
colinear predictor variables were not included in the same GAMM. As 
such, SST and BVF were not included together in candidate GAMMs. 
A Bernoulli family distribution was used for BRTs, in which all envi‐
ronmental variables were included since BRTs can handle irrelevant 
predictors and any collinearity effects (Elith et al., 2008). GAMM‐BRT 
ensemble model combinations were explored by ensembling the sea‐
sonal BRTs with each of the top three performing seasonal GAMMs. 
Each model type was given an equal weighting in the ensembles.

Because of the importance of using multiple metrics for SDM eval‐
uation (Fourcade, Besnard, & Secondi, 2017), predictive performance 
for the BRTs, top three GAMMs, and ensemble model combinations 
was further evaluated using AUC and True Skill Statistic (TSS) metrics 
on three training and testing dataset combinations: (a) k‐fold cross‐val‐
idation with a 75%/25% training/testing data split over each of five 
folds, (b) “Leave One Out” cross‐validation in which a year of data 
was iteratively left out from training and retained for testing and (c) 
the full tagging dataset tested on an independent blue whale sight‐
ings dataset (N = 3,413 observations; SI Table S3, Figures S3 and S4). 
To calculate AUC and TSS metrics for testing against sightings data, 
pseudo‐absences were randomly generated at a 1:3 presence:absence 
ratio. As independent testing is recommended over cross‐validation 
for evaluating SDM performance (Derville et al., 2018; Gregr, Palacios, 
Thompson, & Chan, 2018), the final model was chosen based on the 
sightings data metric averaged across seasons. Finally, we calculated 
the point biserial correlation between the final model's predictions 
and independent sightings versus pseudo‐absences (Elith et al., 2006). 
Daily spatial predictions of blue whale habitat suitability were mapped 
onto the 0.1° gridded study domain using the “raster” r package.

2.4 | Risk exposure in shipping lanes

Based on the output of the top‐performing model or ensemble, we 
compared predicted  habitat suitability within shipping lanes inside 
and outside of the Santa Barbara Channel in the SCB over the course 
of a year to evaluate spatiotemporal patterns in risk exposure to ship 
strikes. Vessels travelling into the SCB use either established routes 
inside the Santa Barbara Channel (“Northern approach”) or a Western 
approach outside of the channel, following the implementation of an 
“Ocean‐Going Vessel Fuel Rule” in 2009 that resulted in increased traf‐
fic using the Western approach (Redfern et al., 2013). Spatial layers 
for the alternate routes were provided by the Channel Islands National 
Marine Sanctuary. The average of predicted habitat suitability in all grid 
cells intersecting each lane was calculated for each day of the year in 
2009 and 2015 to compare a year with average environmental condi‐
tions (2009) to a year in which a climatic anomaly occurred associated 
with a prolonged marine heatwave (2015) (Bond, Cronin, Freeland, & 
Mantua, 2015; Di Lorenzo & Mantua, 2016; Jacox et al., 2018, 2016).

All analyses were performed using r statistical computing (R 
Core Team, 2017).

3  | RESULTS

3.1 | Species distribution model

Dynamic ensemble modelling for blue whales revealed that blue 
whale habitat use in the CCE is strongly influenced by tempera‐
ture, seafloor topography and subsurface water properties (Table 1, 
Figures 1 and 2). Seasonal models outperformed year‐round models 
on average for both GAMMs and BRTs (Table S2), and top models 
showed high predictive performance, with AUC scores using track‐
ing and independent sightings datasets ranging from 0.84 to 0.99, 
and TSS scores ranging from 0.55 to 0.89 (Tables 1 and S1). The high‐
est performing GAMM included SST, SSH_sd, z, z_sd, ILD and EKE 
(Table 1, Figure 1). The average explained deviance, a measure of 
descriptive performance, for the seasonal GAMMs was 43.4%. BRTs 
did not undergo variable selection and included all environmental 

TA B L E  1   Top seasonal GAMM, BRT and ensemble candidate models and diagnostic metrics (AUC/TSS) compared to independent 
sightings data for each season and averaged across seasons. Metrics for additional training/testing methods are provided in Table S1. 
Variable acronyms refer to sea surface temperature (SST), bathymetry (z), sea surface height (SSH), SSH standard deviation (SSH_sd), 
bathymetry standard deviation (z_sd), isothermal layer depth (ILD), bulk Brunt Väisälä frequency (BVF), and eddy kinetic energy (EKE). All 
GAMMs include a random effect for individual. The final model is highlighted in bold

Model name Model description Winter/spring Summer/fall Seas. Avg.

GAMM 1 SST + SSH_sd + z + z_sd+ILD + EKE| 0.974/0.846 0.908/0.755 0.941/0.801

GAMM 2 SST + SSH_sd + z + z_sd + ILD + EKE + lat*lon 0.914/0.724 0.892/0.727 0.903/0.706

GAMM 3 SST*lat + SSH_sd + z + z_sd + ILD + EKE 0.945/0.777 0.896/0.722 0.921/0.750

BRT SST + SST_sd + SSH + SSH_sd + z + z_
sd + ILD + EKE + curl + BVF + slope + aspect

0.983/0.880 0.903/0.704 0.943/0.792

Ensemble 1 GAMM 1 + BRT 0.985/0.875 0.913/0.732 0.949/0.804

Ensemble 2 GAMM 2 + BRT 0.972/0.852 0.910/0.722 0.941/0.787

Ensemble 3 GAMM 3 + BRT 0.978/0.854 0.906/0.725 0.941/0.790
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covariates, though SST, SSH_sd, z, z_sd and ILD contributed the 
highest explained deviance (Table 1, Figure 2, Figures S5 and S6). 
The average explained deviance for the seasonal BRTs was 60.1%.

GAMMs and BRTs showed general agreement in habitat preferences. 
For both model types, some differences in response curves between sea‐
sons were apparent: in winter/spring, habitat suitability was associated 
with SST >15°C, high SST standard deviations indicating thermal front 
activity, shallower ILDs (<50 m), low BVFs indicating weak stratification, 
seafloor depths <3,000 m, and areas of high seafloor ruggedness as mea‐
sured by standard deviation of bathymetry (Figures 1 and 2, Figure S5). 
In summer/fall, habitat suitability was associated with SST between 16 
and 20°C, weak stratification, shallower seafloor depths (<2,000 m), high 
seafloor ruggedness and high wind stress curl (Figures 1 and 2, Figure 
S6). In addition, sea surface height standard deviation (SSH_sd), a mea‐
sure of mesoscale variability, was a significant contributor to the models 
in summer/fall, but not in winter/spring (Figures 1 and 2). Multi‐model 
ensembles outperformed single models (Table 1). Based on AUC and TSS 
metrics using the independent sightings dataset, the final model used for 
spatial predictions of habitat suitability was an ensemble between the 
seasonal BRTs and highest performing seasonal GAMMs. Point biserial 
correlation confirmed a significant association with higher habitat suit‐
ability values for sightings versus pseudo‐absences (Pearson's correlation 
coefficient = 0.547, p‐value <0.001; Elith et al., 2006).

The spatial dynamics of the whales’ latitudinal migratory 
behaviour were evident in the predictions and matched pat‐
terns previously described in the literature (Bailey et al., 2009; 
Burtenshaw et al., 2004; Irvine et al., 2014; Mate et al., 1999). 
Blue whale habitat suitability in the CCE generally remained low 
January–April and began increasing in the SCB by May and June. 
Habitat suitability continued to increase northward through late 
summer and early fall, reflecting the whales’ northward progres‐
sion as more northerly habitats became productive in accor‐
dance with the seasonal upwelling cycle (Bograd et al., 2009). By 
November, habitat suitability contracted southward into the SCB 
and remained low through winter, in concordance with whales 
returning to tropical breeding grounds. Consistent with previous 
studies (Bailey et al., 2009; Hazen et al., 2017; Irvine et al., 2014), 
hotspots of habitat suitability within the CCE were observed in 
the SCB, Monterey Bay (~37°N), Gulf of the Farallones (~38°N), 
and in the vicinity of Cape Mendocino (~40°N) and Cape Blanco 
(~43°N) (Figure 3). Spatial predictions for 2016 during the spring 
and summertime upwelling season/period of intensive blue whale 
foraging in the California Current (May–September) are pre‐
sented in Figure 3. Daily spatial predictions for the years 2009, 
2015 and 2016 can be viewed interactively and downloaded via 
RShiny (S7).

F I G U R E  1   Response curves of the final seasonal presence‐availability Generalized Additive Mixed Models in winter/spring (December–
June) and summer/fall (July–November). Variable acronyms refer to sea surface temperature (SST), bathymetry (z), sea surface height 
standard deviation (SSH_sd), bathymetry standard deviation (z_sd), isothermal layer depth (ILD) and eddy kinetic energy (EKE). Dashed lines 
indicate 95% confidence intervals. Tick marks on the x‐axis indicate all presence and pseudo‐absence data
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3.2 | Seasonal timing of risk exposure in 
shipping lanes

Predicted whale habitat suitability in the shipping lanes varied sub‐
stantially within and between years as a function of environmental 
conditions (Figures 4 and 5, Figure S8). Habitat suitability within the 
shipping lanes in 2009 matched the expected pattern of whale mi‐
gratory behaviour as well as the observer sightings data, with very 
low habitat suitability December–April and a sustained period of 
high suitability June–October (Figure 5). In contrast, the same analy‐
sis during the Northeast Pacific marine heatwave of 2015 showed 
high periods of suitability distributed throughout the annual cycle, 
which were similarly concordant with the sightings data (Figure 5).

4  | DISCUSSION

Dynamic management approaches, in which management strategies 
are adjusted in concert with relevant biological, environmental and so‐
cioeconomic processes, are increasingly proposed to balance the trade‐
offs between human activities and species conservation (Lewison et 
al., 2015; Maxwell et al., 2015). Because dynamic management strate‐
gies often rely on an understanding of how the spatial distribution of 
a species or population changes with time (Howell, Kobayashi, Parker, 
Balazs, & Polovina, 2008; Maxwell et al., 2015), dynamic SDMs are 
emerging as an important natural resource management tool (Hazen 
et al., 2018). Dynamic SDMs can not only elucidate a species’ habi‐
tat preferences and distribution in relation to shifting environmental 

conditions, but they can also help identify the spatial and temporal dy‐
namics of species’ risk exposure (Zydelis et al., 2011). Our study high‐
lights the utility of dynamic ensemble modelling using high‐resolution 
environmental data to identify time‐varying species distributions and 
guide dynamic management of a highly migratory species.

4.1 | Model performance

Based on a suite of testing metrics, including validation against an 
extensive compilation of independent sightings data, our final sea‐
sonal model yielded accurate year‐round predictions of daily blue 
whale habitat suitability in the CCE and realistically reproduced the 
whales’ expected latitudinal migratory behaviour. The top GAMM 
and BRT models showed strong descriptive and predictive perfor‐
mance, and an ensemble of the two models increased overall per‐
formance (Table 1). A previous blue whale model relating the same 
satellite tracking dataset to monthly remotely sensed variables 
obtained a full dataset AUC score of 0.86 (Hazen et al., 2017); the 
present model represents a substantial improvement in predictive 
performance based on that metric (Full AUC = 0.95), as well as com‐
pared to independent observations (Sightings AUC = 0.95). In addi‐
tion, the use of year‐round satellite tracking data spanning over ten 
years with daily ocean‐modelled environmental variables enabled 
predictions of blue whale habitat suitability with unprecedented 
temporal coverage and resolution in the CCE, representing a signifi‐
cant step towards finer scale dynamic management applications.

Though our satellite tracking dataset ended in 2008, comparison 
with  independent sightings data through 2017 suggested that the 

F I G U R E  2   Smoothed response curves of the top four contributing predictor variables in seasonal presence‐availability Boosted 
Regression Trees. Variable acronymns refer to sea surface temperature (SST), bathymetry standard deviation (z_sd), bathymetry (z), 
isothermal layer depth (ILD) and sea surface height standard deviation (SSH_sd). Percentages reflect the percentage contribution of each 
variable to explained deviance. Tick marks on the x‐axis indicate the ten quantiles of presence and pseudo‐absence data

SST (25.7%)

M
ar

gi
na

l e
ffe

ct

0

z_sd (17%)

0

z (15.2%) ILD (11.3%)

Winter/Spring

0

z (35%) SST (8.4%)

0

z_sd (8.3%)

6 10 14 18 500 1500 −5000 −2000 0 100 200

−5000 −2000 10 14 18 22 500 1500 0.02 0.06 0.10

−
1.

0
0.

5
1.

5

−
1.

0
0.

5
1.

5

−
1.

0
0.

5
1.

5

−
1.

0
0.

5
1.

5

−
1.

0
0.

5
2.

0

−
1.

0
0.

5
2.

0

−
1.

0
0.

5
2.

0

−
1.

0
0.

5
2.

0

SSH_sd (7.7%)

Summer/Fall

M
ar

gi
na

l e
ffe

ct



1188  |     ABRAHMS et al.

F I G U R E  3   Comparison of spatial predictions at 0.1‐degree resolution of blue whale habitat suitability (range 0–1) in the California 
Current from the top‐performing GAMM, BRT and ensemble models for the first day of the month in May, July and September 2016. 
Bottom right panel shows points of interest, from north to south: Cape Blanco, Cape Mendocino, Gulf of the Farallones, Monterey Bay 
(stars) and Southern California Bight (box)
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extrapolative performance of our model into novel years and con‐
ditions is credible. Additional observations could be used to further 
evaluate extrapolative performance and monitor any changes in 
whale behaviour or environmental preferences as conditions in the 
CCE continue to change (Di Lorenzo, Miller, Schneider, & McWilliams, 
2005; Di Lorenzo & Ohman, 2013). New data sources such as acous‐
tic monitoring arrays (Širovic et al., 2015) could be integrated into 
both model building and validation. Blue whale locations collected 
from satellite tag data showed highest blue whale densities near the 
coast (Figure S1), which may be due in part to nearshore tagging loca‐
tions (Bailey et al., 2009). Telemetry‐based models may therefore un‐
derestimate offshore habitat suitability, though model performance 
remained high when compared to sightings data that were more 
broadly distributed offshore (Figure S3). Testing the performance of 
models developed using a combination of data types such as telem‐
etry, transect survey and acoustic monitoring data would therefore 
be a valuable exercise for exploring biases based on data types used 
(Fithian, Elith, Hastie, & Keith, 2014; Yamamoto et al., 2015).

Our model evaluation procedure also highlights the value of using 
multi‐model ensembles. Though top‐performing GAMMs and BRTs 
yielded similarly high diagnostic scores (Table 1), fine‐scale differences 
were evident in the spatial predictions (Figure 3). Different modelling 

approaches have various strengths and weaknesses, and in particular 
display trade‐offs between the ability to explain fitted data versus pre‐
dict novel data (i.e., descriptive versus predictive performance, respec‐
tively) (Derville et al., 2018). For instance, machine learning techniques 
like BRTs typically have strong descriptive power but can suffer from 
overfitting (Derville et al., 2018). Indeed, the unsmoothed response 
curves from our BRT models (Figures S5 and S6) show abrupt changes 
typical of the recursive binary splits of regression trees (Elith et al., 
2008). Such abruptness in response curves can indicate overfitting, 
though the performance of these models tested against novel sightings 
data suggests this is not the case. In contrast to machine learning mod‐
els, regression models like GAMMs may have lower descriptive per‐
formance but have been shown to have good predictive performance 
(Derville et al., 2018; Gregr et al., 2018; Qiao et al., 2015). GAMMs 
have also been proposed as effective tools for predicting into novel 
conditions (Becker et al., 2018; Derville et al., 2018). Ensemble models 
therefore provide an approach for balancing these trade‐offs and can 
highlight areas of consensus between models (Araújo & New, 2007; 
Gritti et al., 2013; Marmion et al., 2009; Scales et al., 2015). In order 
to be relevant to management applications, our interest here was pri‐
marily in predictive rather than descriptive performance, and indeed, 
we demonstrate that a multi‐model ensemble yielded higher predictive 

F I G U R E  4   Spatial predictions of blue whale habitat suitability in the Southern California Bight overlaid with shipping lanes inside the 
Santa Barbara Channel (Northern approach) and outside the Channel (Western approach) in (a) March, (b) June, (c) September and (d) 
December of 2009

Habitat suitability

(a) (b)

(c) (d)

 0
1 

M
ar

ch
 2

00
9

 0
1 

Ju
ne

 2
00

9

 0
1 

S
ep

te
m

be
r 

20
09

 0
1 

D
ec

em
be

r 
20

09



1190  |     ABRAHMS et al.

performance than either single‐model type. Nevertheless, concor‐
dance between the highest‐ranked GAMMs and BRTs in modelled re‐
sponses to environmental predictors lends confidence that each model 
was able to detect general patterns of whale habitat preferences.

4.2 | Blue whale habitat use

Previous studies have demonstrated the importance of SST, SSH 
and seafloor topography in blue whale habitat selection in the CCE 
(Becker et al., 2016; Hazen et al., 2017). Our study supports these 
findings and indicates that subsurface ocean dynamics also play an 
important role in habitat suitability for blue whales in this region. 
Isothermal layer depth (ILD) was retained as a significant predictor 
in the top ranking single models, and likely contributed to increased 
predictive performance as compared to a previous model using 
only remotely‐sensed surface variables (Hazen et al., 2017). These 
results support a recent study demonstrating that subsurface ocean 
variables can improve descriptive power and predictive performance 
in SDMs for a number of other marine predator species, and help re‐
solve species’ responses to mesoscale activity apparent in the patch‐
iness of prediction fields (Brodie et al., 2018). Blue whales’ apparent 
preference for areas with shallower ILD values is also consistent 
with higher predicted blue whale densities in these areas (Becker et 
al., 2016), an association likely driven by increased prey availability. 
Indeed, May–September predictions of blue whale habitat suitability 
showed strong spatial consistency with known krill hotspots in the 

SCB, Monterey Bay, and downstream of Cape Mendocino and Cape 
Blanco (Santora, Sydeman, Schroeder, Wells, & Field, 2011; Santora, 
Zeno, Dorman, & Sydeman, 2018). Thus, while our model did not 
include prey data, it was able to realistically identify blue whale for‐
aging hotspots via its combination of physical proxies.

4.3 | Implications for dynamic management

Despite the dynamism of human activities and species affected by 
them, most boundaries used for ocean management, such as shipping 
lanes, are static. If dynamic spatial boundaries are unfeasible for man‐
agement, the spatiotemporal patterns of overlap with anthropogenic 
threats should be assessed to understand where and when greatest 
risk occurs (Redfern et al., 2013; Rockwood et al., 2017). Specifically, 
information on spatiotemporal patterns of risk could be used to guide 
the timing of management actions, such as the implementation of 
slowdown rules, where spatial management boundaries are otherwise 
inflexible. Previous year‐round models for the Eastern North Pacific 
blue whale population are valuable for long‐term planning (Hazen 
et al., 2017), but moving to finer spatiotemporal resolution offers a 
better match with the timescales of oceanographic variability and 
human activities in the region. We found that predicted whale habitat 
under average environmental conditions overlapped with southern 
California shipping lanes primarily during June–October, with greater 
risk exposure shifting from the western to the northern lane later in 
the year (Figures 4 and 5). However, the anomalous warming of 2015 
(Bond et al., 2015; Di Lorenzo & Mantua, 2016; Jacox et al., 2018, 
2016) resulted in dramatic changes in the timing of overlap, with risk 
exposure increasing earlier in the year under anomalously warm con‐
ditions (Figure 5). These predictions were mirrored by the date ranges 
of observed blue whale sightings in those years (Figure 5, Figure S4).

Such results suggest that environmental and climatic conditions 
should be considered in management planning and that slowdown rules 
or alternate shipping lanes could be employed dynamically based on 
time‐varying risk of ship strike. Dynamic slowdown areas based on high 
whale use have been shown to effectively reduce North Atlantic right 
whale mortalities from ship strikes, and 15‐day temporary management 
areas were employed at short notice to protect unpredictable whale 
aggregations (Laist et al., 2014). However, these measures were only 
effective when slowdowns were mandatory. As slow‐steaming or use 
of alternative routes can be costly for vessels, dynamic implementation 
of these management options has the potential to be more economical 
than static or even seasonal rules. Daily distributions of whale habitat 
suitability could be combined with vessel movement data derived from 
shipboard monitoring systems (e.g., AIS; Kroodsma et al., 2018) to re‐
fine strike risk and evaluate alternative management options. Future 
studies should also investigate the correspondence in whale sightings 
or observed strikes to particular thresholds in whale habitat suitability 
that can be used to trigger management interventions.

Finally, our study relied on fine‐scale, gapless environmental 
data derived from a data‐assimilative ocean model developed for our 
study region. This type of model output is becoming more commonly 
available regionally and similar products exist globally at coarser 

F I G U R E  5   Predicted blue whale habitat suitability (spatial 
mean ± SD) intersecting shipping lanes inside the Santa Barbara 
Channel (Northern approach) versus outside (Western approach) in 
2009 and 2015. Bars at bottom of plots display time ranges of blue 
whale sightings observed in the Southern California Bight in 2009 
and 2015, respectively
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resolutions; we encourage development, dissemination and uptake of 
output from these ocean models for applications like the one demon‐
strated here. In the absence of gapless data, analytical techniques 
such as Boosted Regression Trees have been successfully applied 
to deal with missing remotely sensed data, for example due to cloud 
cover, in a dynamic species distribution modelling context (Hazen et 
al., 2018; Welch et al., 2018). With the increase in ocean modelling 
or remote sensing technologies and computational power, there is 
greater opportunity to implement dynamic management approaches 
that are more responsive to changing environmental conditions, spe‐
cies’ movements and patterns of human activity (Hazen et al., 2018; 
Maxwell et al., 2015). Such efforts thereby exemplify opportunities 
for cross‐disciplinary collaboration. Dynamic, high‐resolution species 
distribution models provide a valuable tool for assessing the spatio‐
temporal patterns of risk exposure to achieve management objectives.
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