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A B S T R A C T

Low frequency variability of the California Current System (CCS) is investigated using circulation estimates
based on a 31-year (1980–2010) sequence of historical analyses of the CCS calculated using the Regional Ocean
Modeling System (ROMS) 4-dimensional variational (4D-Var) data assimilation system. The leading 3-dimen-
sional multivariate empirical orthogonal functions (3D EOFs) of the CCS circulation were computed and provide
a detailed view of low-frequency circulation variability within the CCS. The 3D EOFs are used as basis functions
for a linear inverse model of the circulation, and several Principal Oscillation Patterns (POPs) of the circulation
are identified. The leading POPs have periods in the range ∼ −4 10 years, and shed light on the 3-dimensional
time evolving structure associated with low-frequency variability in the circulation. A particular focus here is
coastal upwelling. In particular, a POP with a period close to 10 years appears to be preferentially excited as a
resonant response to forcing associated with the regional expression of the Pacific Decadal Oscillation, the North
Pacific Gyre Oscillation and the El Niño Southern Oscillation.

1. Introduction

The California Current is one of four major eastern boundary cur-
rents in the global ocean characterized by a pronounced seasonal cycle
of coastal upwelling. Primary productivity in the California Current
System (CCS) supports an important and diverse complex of marine
ecosystems that are vulnerable to climate variability and climate
change. The CCS circulation is characterized by variability on space-
and time-scales ranging from the relatively short, sub-seasonal varia-
bility of the sub-mesoscale circulation, through to seasonal, inter-
annual, and decadal time-scales. The CCS is arguably one of the best
observed regions of the world ocean. Nevertheless, despite the plethora
of ocean observations along the U.S. west coast, the in situ observations
are fairly sparse in space and time, and large swaths of the ocean sur-
face are often obscured by an extensive layer of marine stratus, pre-
venting infrared sensors aboard earth orbiting satellites from observing
the surface temperature. Data assimilation is therefore an important
tool for blending discontinuous ocean observations with state-of-the-art
ocean models to yield reliable space-time estimates of the circulation.
Neveu et al. (2017) hereafter N16 describe in detail a sequence of ocean

circulation estimates for the CCS that span the last three decades, and
that are based on an advanced 4-dimensional variational (4D-Var) data
assimilation system. The circulation estimates described in N16 are
available as a community resource, and in this paper they are used to
quantify the variability in the CCS circulation associated with the Pa-
cific Decadal Oscillation (PDO), the North Pacific Gyre Oscillation
(NPGO), and, to a lesser degree, ENSO.

The NPGO is the oceanic complement of the atmospheric North
Pacific Oscillation and is characterized by a spin-up and spin-down of
the subtropical and subpolar gyre circulations on decadal time-scales
(Di Lorenzo et al., 2008). The NPGO index is defined as the Principal
Component (PC) time series of the second EOF of SSH in the North
Pacific (http://www.o3d.org/npgo). Since the CCS forms part of the
equatorward branch of the North Pacific subtropical gyre, the NPGO
can significantly influence the coastal circulation along the U.S. west
coast. The positive phase of the NPGO manifests itself physically as a
strengthening of the North Pacific Current characterized by an increase
in the meridional sea surface height (SSH) gradient, downwelling fa-
vorable conditions in the subtropical gyre and along the Alaskan coast,
and upwelling favorable conditions in the Alaskan gyre and in the CCS
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equatorward of °38 N (Di Lorenzo et al., 2008).
Within the CCS region, the NPGO has been shown to correlate with

variability in sea surface salinity (SSS), nutrients, chlorophyll-a, and
alongshore upwelling winds (Di Lorenzo et al., 2009; Chhak et al.,
2009a, 2009b). Combes et al. (2013) confirmed the connection between
the NPGO and upwelling winds by correlating the surface concentration
of a modeled passive tracer along the central and southern California
coast (following a sub-surface release) with the NPGO index. Ad-
ditionally, Chenillat et al. (2012) have shown that the phase of the
NPGO can affect the timing of the onset of the upwelling season (i.e. the
spring transition), with the positive (negative) phase initiating an ear-
lier (delayed) onset. The timing of the spring transition has been shown
to have significant ecological effects with an early onset of upwelling
typically leading to a more productive ecosystem (McClatchie et al.,
2009).

The PDO is another important basin-wide mode of variability, with
a structure similar to the El Niño Southern Oscillation (ENSO) in the
tropical central and eastern Pacific (Mantua et al., 1997). Similar to
ENSO, the PDO drives variability through adjustments to the atmo-
spheric pressure over the North Pacific and is defined as the first PC
time series of SST in the North Pacific between °20 N and 65°N (http://
jisao.washington.edu/pdo). During the positive phase of the PDO,
anomalously low pressure in the North Pacific is associated with cy-
clonic winds along the west coast of North America. Poleward along-
shore wind anomalies drive anomalous onshore transport of surface
water creating anomalously high sea surface temperature (SST) and
SSH. Schneider and Cornuelle (2005) have shown that the PDO can be
viewed as the combined response of ocean forcing by ENSO and the
Aleutian Low, and modulation of zonal advection by the Kuroshio-
Oyashio extension by oceanic Rossby waves, lending weight to the idea
that the PDO is not associated with a single dynamical mode of the
ocean-atmosphere system.

The influence of the low-frequency component of the PDO on the
CCS is commonly discussed in terms of regime shifts. A shift in phase
(or polarity) of the PDO often leads to a shift in the long-term average
(>10 years) of the ocean state that is generally accompanied by a shift
in ecological communities. Such a regime shift occurred in 1977 when
the PDO transitioned from a negative to positive phase accompanied by
anomalously low sea level pressure leading to weakened alongshore
winds, warm SST anomalies and anomalously high SSH in the CCS
(Miller et al., 1994; King, 2005). Bograd and Lynn (2003) document a
warming in the upper 200–400 m of the water column, an increase in
stratification, and shifts in the position of the dominant large-scale
currents in the CCS due to changes in the depth and slope of isopycnal
surfaces. The PDO has also been linked with the source depth of
coastally upwelled waters, with the positive phase leading to a reduc-
tion in source depth (Chhak and Di Lorenzo, 2007). This reduction in
the supply of deep, nutrient rich waters during the positive phase of the
PDO is coherent with changes in marine ecosystem communities during
the 1977 regime shift (McGowan et al., 2003; Chavez et al., 2003).

More recently, Johnstone and Mantua (2014) have explored the role
of the PDO in the context of the observed long term upward trend in
SST in the Northeast Pacific between 1900 and 2012 (Field et al., 2006)
and its connection to anthropogenic forcing. They found that even
though an upward trend is apparent in sea level pressure and SST, a
possible reversal of the trend has occurred since 1980.

The CCS response to ENSO is driven by two distinct mechanisms
often referred to as local and oceanic mechanisms. The local forcing of
ENSO on the CCS is through atmospheric teleconnections from the
tropics which drive changes in the local atmospheric circulation. The
oceanic forcing occurs via coastally trapped waves that propagate
poleward along the coastal wave guide from the equator. A frequently
used index of ENSO activity in the equatorial Pacific is the Multivariate
ENSO Index (MEI, http://www.esrl.noaa.gov/psd/enso/mei). The MEI
is defined as the principal component (PC) time series of the first EOF of
a combination of several measured oceanic and atmospheric variables

in the tropical Pacific that include sea-level pressure, SST, zonal and
meridional components of the surface wind, surface air temperature
and total cloudiness (Wolter and Timlin, 2011).

The PDO and NPGO are essentially statistical constructs and have
been identified from EOF analyses of surface fields alone. However, this
view of the oceanic and atmospheric circulation is far from complete
and may very well represent a very distorted view of the circulation
variability in regions such as the CCS. In this paper, we have adopted a
different approach to that commonly used, and explore variability in
CCS circulation estimates by considering covariability in the full 3-di-
mensional ocean circulation. The ocean circulation estimates used here
span the period 1980–2010 and were computed using the Regional
Ocean Modeling System (ROMS) and a 4D-Var data assimilation
system. The ROMS-CCS 4D-Var analysis system is briefly reviewed in
Section 2. In Section 3, multivariate 3-dimensional principal component
analysis is used to explore the dominant spatial modes of variability
captured by the 4D-Var analyses. In Section 4, the Principal Oscillation
Patterns (POPs) of the CCS circulation are computed using linear in-
verse modeling methods, and in Section 5 are used to explore the in-
trinsic low frequency variability of coastal upwelling. Specifically for-
cing of the leading POPs by the PDO, NPGO and ENSO is explored. A
summary of our findings and conclusions is presented in Section 6.

2. The CCS historical analyses

The CCS circulation estimates analyzed here were computed by
assimilating available observations for the period 1980–2010 into
ROMS using 4D-Var data assimilation. The configuration of the model
and ROMS 4D-Var data assimilation system are presented in detail in
N16, so only a brief description will be given here.

The ROMS CCS model domain and bathymetry are illustrated in
Fig. 1. The model was configured with °1/10 horizontal resolution and
42 terrian following σ-levels in the vertical that vary in thickness be-
tween 0.3 m and 8 m over the continental shelf and 7–100 m in the
deep ocean. The period 1980–2010 was divided into consecutive 8-day
overlapping windows, and all available ocean observations during each
window were assimilated into ROMS CCS. Observations assimilated

Fig. 1. The ROMS domain and bathymetry (m) used in WCRA31. Also shown is the
central California region referred to in the text, which extends offshore 200 km between
Cape Mendocino and Point Conception.
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include satellite SST (AVHRR, MODIS and AMSR-E), SSH (Aviso), and
in situ hydrographic profiles of temperature and salinity. During each
data assimilation cycle, the initial conditions, surface and open
boundary conditions were adjusted using the 4D-Var procedure. The
prior (or background) state for the initial conditions was taken to be the
posterior (or analysis) at the mid-point of the previous cycle. The prior
surface forcing was derived from a combination of sources which in-
clude atmospheric variables at standard height from the ECMWF 40-
year reanalysis (ERA40) (1980–2001; Källberg et al., 2004) and ERA
Interim products (2002–2010; Dee et al., 2011), and surface winds from
the Cross-Calibrated Multi-Platform (CCMP) ocean wind product of
Atlas et al. (2011). The prior open boundary conditions were taken
from the global Simple Ocean Data Assimilation product (SODA) of
Carton and Giese (2008). The resulting 4D-Var circulation analyses
spanning the 31-year period will be referred to in sequel as WCRA31.

3. Multivariate 3D EOF analysis

3.1. Computation of the EOFs

Since the majority of ocean observations take the form of satellite
measurements of SST and SSH, it is common to compute Empirical
Orthogonal Functions (EOFs) of surface data alone. The leading EOFs of
observed SST and SSH within the ROMS domain of Fig. 1 yield spatial
patterns of variance that share features in common with published EOFs
of SST and SSH for the entire North Pacific (not shown). Specifically,
the regional EOFs capture some of the features in SST and SSH asso-
ciated with the PDO, the NPGO and ENSO along the U.S. west coast.
The associated PC time series of the leading two EOFs of observed SST
and SSH correlate quite well with the generally accepted indicators of
the PDO, NPGO and ENSO (not shown). However, EOF calculations of
observed SST and SSH that are limited to the model domain are unable
to completely describe the regional expressions of the basin-wide EOFs
that define the PDO and NPGO.

The 4D-Var analyses, however, provide a complete space-time view
of the ocean circulation. Therefore, we are not restricted to exploring
only surface variability and, as we will demonstrate, restricting atten-
tion to the surface circulation alone may lead to a distorted view of the
circulation variability, since the surface conditions describe only a
small subset of the entire circulation conditions and account for a small
fraction of the ocean energy. A unique aspect of the current work is the
computation of multivariate 3-dimensional (3D) EOFs of the circulation
using all grid point values of the ROMS temperature, salinity, velocity

and sea surface displacement, which provide a much more complete
view of the CCS circulation variability than 2D EOFs of surface fields.

The 3D multivariate EOFs were computed for WCRA31 using
monthly averaged fields as described in Appendix A. Prior to computing
the EOFs, each 4D-Var analysis field was spatially smoothed using 20
applications of a 2nd-order Shapiro filter in order to suppress the in-
fluence of the mesoscale circulations on the covariance. In conjunction
with the monthly averaging this procedure approximates low-pass fil-
tering of the time series of 4D-Var analyses in the frequency-wave-
number domain, with the purpose of highlighting the low-frequency,
large-scale components of circulation variability that is the focus here.
The resulting 3D multivariate covariance matrix has a dimension
∼ ×5.5 106 so standard matrix algorithms cannot be used to compute
the EOFs. Instead, the leading EOFs were computed using an iterative
Lanczos method (Golub and Van Loan, 1989), which is also described in
Appendix A.

3.2. Climate indicators and correlations

While the EOFs of the covariance matrix, C (cf Appendix A), re-
present the leading modes of variability in the model domain only, it is
of interest to quantify the extent to which these patterns of regional
circulation correlate with ENSO, the PDO and the NPGO. Time series of
the PDO index, the NPGO index and the MEI for the period spanned by
WCRA31 are shown in Fig. 2d–f for reference, where each time series
has been smoothed using a 12-month running mean.

We will focus primarily on the leading three EOFs, which are de-
noted r1, r2 and r3 following the notation of Appendix A. Correlations of
the PC time series of r1, r2 and r3 with each climate index are shown in
Table 1 along with the percentage of the energy density that is ex-
plained. PC1 is significantly correlated with all three climate indices,

Fig. 2. Principal component time series for the leading three 3D
EOFs of WCRA31 (a) r1, (b) r2, and (c) r3. Time series of (d) the
PDO index, (e) the NPGO index, and (f) the MEI. A 12-month
running mean has been applied to each time series.

Table 1
The percentage of variance explained by each of the leading three multivariate 3D EOFs
of WCRA31. Also shown are the correlation coefficients between the PC time series as-
sociated with each EOF and the PDO index, the NPGO index and the MEI. All significant
correlations are shown in bold face.

PC 1 2 3

% 18% 13% 9%
PDO 0.70 0.25 0.10
NPGO − 0.54 − 0.13 − 0.45
MEI 0.35 0.16 0.29
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and particularly with the PDO and NPGO. The correlation of PC2 with
each index is quite low, while PC3 captures some of the variance as-
sociated with the NPGO. The fraction of variance explained by the
leading 3D EOFs ranges between 18% and 9%, consistent with a 3D
EOF spectrum that is relatively flat (see Appendix A, Fig. A.2). This may
be partly due to the very large dimension of the model state. However,
subsampling the 4D-Var circulation fields at lower resolution (20 km,
30 km and 50 km were considered here) yields the same EOFs and the
same explained variance, despite the dramatic reduction in dimension
(not shown). Therefore the relatively flat EOF spectrum must be asso-
ciated with the wide range of 3D circulation structures that are present
in the 4D-Var analyses.

Table 1 indicates that the 3D circulation variability in the CCS is
considerably more complicated than the conventional view based on
the PDO and NPGO modes of variability identified based solely on
surface fields of SST and SSH (both of which account for a small fraction
of the total energy density - see Appendix A, Eq. (A.2)). The structure of
the leading three 3D EOFs will be considered next.

3.3. CCS EOFs

3.3.1. EOF 1 (r1)
The PC time series of the leading EOF r1 is shown in Fig. 2a and r1

explains 18% of the energy density. The most significant characteristic
of the first PC time series in Fig. 2a is the downward trend over the
length of the analysis time period. The SST and SSH structure of r1 are
shown in Fig. 3a. In combination, Fig. 2a and Fig. 3a indicate that prior
to 2000, the SST and SSH associated with r1 were mostly positive
throughout the domain, however the downward trend in the PC time
series corresponds to a surface cooling along the coast (∼ °0.3 C), and a
lowering of sea level (∼ 1 cm) during the most recent decade of
WCRA31 relative to the mean associated with r1.

Fig. 3d shows the sea surface salinity (SSS) and surface circulation
of r1, and in combination with Figs. 2a and Fig. 3a indicates cooler
(warmer) by ∼ °0.5 C than normal surface conditions along the coast
during the period 2000–2010 (1980–1999) associated with r1, accom-
panied by surface salinities that were higher (lower) by ∼ 0.1 psu than

the mean. At the same time, r1 acts to weaken the equatorward Cali-
fornia Current poleward of Cape Mendocino (Fig. 3d) during the most
recent decade and strengthens it prior to 2000.

The vertical structure of temperature and salinity associated with r1
over the upper 500 m of the water column is shown in Figs. 4a and d,
and reveals that the largest temperature and salinity anomalies are
found offshore at depths near the pycnocline. The downward trend in
temperature during the analysis period (∼ − °1 1.5 C in total above the
thermocline) associated with r1 (Fig. 2a) is coherent across the entire
domain, whereas salinity associated with r1 increased within ∼ 500 km
of the coast by ∼ 0.2 psu and decreased within the subtropical gyre by a
similar amount. The upward trending salinity anomalies near the coast
associated with r1 may be related to adjustments in the source depth
during ENSO events (Jacox et al., 2015) which act to force the PDO
(Newman et al., 2003; Schneider and Cornuelle, 2005).

3.3.2. EOF 2 (r2)
The PC time series for r2 is shown in Fig. 2b. There is a relatively

high correlation with the PC time series of r1 (0.74) at a lag of about 3
years which is quite evident by comparing Figs. 2b and a. As demon-
strated in Section 4, r1 and r2 are companion EOFs that describe the
variance associated with several oscillatory dynamical modes.

The SST, SSH and SSS associated with r2 are shown in Figs. 3b and e,
respectively. EOF r2 accounts for 13% of the energy density, and its
corresponding PC time series exhibits low frequency variability with
sign changes every 5–10 years, similar to r1 (Fig. 2b). During much of
the 1990s and the 2000s, the PC time series of r2 was positive (Fig. 2b),
corresponding to surface conditions associated with r2 that were
warmer and fresher than the mean over much of the domain with near
normal SST and SSS along the coast, and a stronger (weaker) California
Current equatorward (poleward) of Cape Mendocino (Fig. 3e). Con-
versely during the 1980s and early 2000s, the anomalous conditions
associated with r2 were reversed. Typical offshore SST and SSS
anomalies associated with r2 are ∼ °0.3 C and 0.07 psu. The vertical
structure of r2 is shown in Figs. 4b and e and reveals that surface
temperature anomalies extend well below the surface and change sign
around 100–200 m depth. Salinity variations are also broadly coherent

Fig. 3. The SST (color), SSH (contours), SSS (color) and surface circulation (streamlines) associated with the leading three EOFS of WCRA31: (a,d) r1, (b,e) r2, and (c,f) r3. The percentage
of explained variance of the energy density CTr( )1 is also indicated. The color bars are in units of degrees Celsius or psu, while the contour interval is × −5 10 m3 . Black (white) contours
indicate positive (negative) values of SSH. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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over the whole domain down to 200–300 m where there is a change in
sign. Typical r2 subsurface temperature and salinity anomalies are
∼ °0.5 C and ∼ 0.1 psu.

3.3.3. EOF 3 (r3)
EOF r3 accounts for 9% of the energy density, and the SST, SSH and

SSS for r3 are shown in Figs. 3c and f. Like r1, SST is single signed across
the entire domain, and decreases in amplitude offshore, while SSS for r3
changes sign in the Southern California Bight (SCB). During the 1990s,
the PC time series associated with r3 was positive (Fig. 2c) and ac-
companied by warmer than normal conditions (∼ °0.4 C) along the
entire coast, more saline conditions poleward of Cape Mendocino (∼ 0.1
psu), near average SSS along the central California coast, and slightly
fresher conditions in the SCB (∼ 0.02 psu) associated with r3. The
component of the California Current associated with r3 (Fig. 3f) was
weaker than average along the entire coast. The temperature and sali-
nity anomalies associated with r3 exhibit quite complex vertical struc-
tures as shown in Figs. 4c and f. Temperature changes sign at around
200 m depth, except along the coast. However, over the upper 100 m or
so, temperature and salinity anomalies associated with r3 have the same
sign, suggesting that they influence the spiciness of the ocean (i.e.
density variations due to changes in temperature and salinity act to
cancel each other out) rather than density.

4. Linear inverse modeling of the ccs

While the 3D-EOFs shed light on the dominant patterns of variance
in the 3D-circulation, they do not, in general, provide direct informa-
tion about the spatial structure of inherent dynamical modes of the
system (e.g. Dommenget and Latif, 2002; Monahan and Fyfe, 2006;
Monahan et al., 2009). A powerful method for uncovering the dyna-
mical modes is linear inverse modeling which is an attempt to construct
a low-dimensional approximation of the full dynamical operators that
govern the evolution of the circulation in space and time. An excellent
review of linear inverse modeling can be found in von Storch et al.
(1995), and there are many notable applications in the atmospheric,
oceanic and climate sciences (e.g. Penland, 1989; Penland and
Magorian, 1993; Penland and Ghil, 1993; Penland and Sardeshmukh,
1995; Del Sole and Hou, 1999; Moore and Kleeman, 2001; Winkler
et al., 2001).

Following the notation in Appendix A, let x represent the time mean
ocean state, and = −δx x x denote departures of x from the mean. If
δx is in statistical equilibrium, the hypothesis set forth in linear inverse
modeling is that δx can be modeled as a stable, stochastically forced,
linear system (i.e. as a first-order autoregressive or Markov process), so
that:

= + ξdδ δ dt dtx A x (1)

where A is the dynamical system matrix that describes the time rate of
change of δx, and ξdt is a white noise (in time) stochastic forcing. The
eigenvectors of A are the normal modes of the system, and are of
considerable interest because they represent the dynamical modes of
the circulation variability about the mean (Pedlosky, 1979). For large
dimensional systems like that considered here, direct computation of
the normal modes from (1) is very challenging. However, the normal
modes can be approximated using a linear inverse model (LIM) re-
presentation of the 4D-Var analyses time series. The procedure used
here is described in detail in Appendix B, and uses the leading 3D
multivariate EOFs and associated PC time series of Section 3 to compute
a reduced rank approximation ∼M of A. Specifically, if tu( ) denotes the
vector of PC time series of the leading 3D EOFs, then:

= +
∼ −t τ tM Φ Φ( ) ( ) 1 (2)

where = 〈 〉t t tΦ u u( ) ( ) ( )T and + = 〈 + 〉t τ t τ tΦ u u( ) ( ) ( )T represent the
zero-lag and time-lagged covariance matrices of tu( ) respectively, and τ
is the time lag. The eigenvectors of ∼M represent empirical approxima-
tions of the normal modes, and are referred to as Principal Oscillation
Patterns (POPs; Hasslemann, 1988). The underlying hypotheses behind
(1) can be tested (Penland and Sardeshmukh, 1995) as described in
Appendix C.

4.1. Principal oscillation patterns of the CCS

As described in Appendix C, the PC time series associated with the
leading 3D EOFs identified in Section 3 (cf Fig. 2) were used to compute
the leading POPs of the CCS circulation. The underlying hypotheses of
the linear inverse modeling approach were rigorously tested as de-
scribed in Appendix C, and were by-and-large found to be satisfied for
the LIMs considered here. Here we will focus on the results obtained
from a particular choice of parameters, but note that the results are

Fig. 4. Vertical zonal sections over the upper 500 m of the water column along every 2 degrees of latitude of temperature (T) and salinity (S) for the leading three EOFs of WCRA31: (a,d)
r1, (b,e) r2, and (c,f) r3.
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relatively insensitive to the parameters chosen (see Appendix C, Section
C.1). The POPs described here were computed after the linear trend was
removed from each PC time series. This was done to minimize any
aliasing or ambiguity that may arise in the period of the POPs asso-
ciated with the trends in the time series. In addition, each PC time series
was smoothed using a 12-month running mean. While this last step is
not essential (see Appendix C), it generally leads to a better separation
of eigenmodes within the POP spectrum, and eliminates non-oscillating
modes which are probably non-physical. For the POPs presented here,
we used a time-lag of =τ 6 months in (2), and the leading 10 3D EOFs
which account for 57% of the energy density (cf Appendix A).

The POPs are identified from the eigenvector equation =
∼ λMe ei i i,

where in general the eigenvalues λi and eigenvectors ei are complex.
Each POP, u, evolves in time according to =t eu e( )i

λ t
ii , where λi is the

complex frequency such that Re λ( )i is the POP decay rate and Im λ( )i is
the oscillatory frequency. Since∼M in (2) is derived from stationary time
series, then by necessity <Re λ( ) 0i for all POPs (Penland and
Sardeshmukh, 1995). Both λi and ei typically occur in complex con-
jugate pairs, and for N = 10, there will be five complex conjugate pairs
of POPs. Table 2 shows the period and e-folding decay time of the five
pairs of POPs in this case. The POPs have periods that range from 3.6
years to 40.6 years. Even though the original time series only span a
period of 31 years, it is still possible for the POPs to have a period that
exceeds the length of the time series (e.g. non-oscillating POPs have an
infinite period). The e-folding times range from 1.1 to 9.6 years. The
POP of particular interest here is mode 3 with a period of 9.7 years and
a long e-folding decay time of 9.6 years, since this POP can dominate
the stochastically forced response of the system (1), as demonstrated in
Section 4.2. Table 2 shows that POP 4 also has a period close to 10
years, but this mode decays very quickly, and is typically much less
important (and unreliable as demonstrated below).

The amplitude of each POP is given by =a t δ te x( ) ( ) ( )i i
H T† where ei

†

are the eigenvectors of ∼MT , and superscript H denotes the Hermitian
transpose. The amplitude coefficients ai(t) will, in general, be complex
and the real and imaginary components should mimic the properties of
true dynamical normal modes of the system. In particular, as discussed
by von Storch et al. (1995), the coherence and phase of Re a t( ( ))i and
Im a t( ( ))i can be used to decide whether a particular POP describes a
true physical mode. Figs. 5a–c show the cross-power spectra between
Re a t( ( ))i and Im a t( ( ))i for the leading three POPs, and reveals that in
each case it peaks at or very near the period of the mode based on λ, as
expected for a normal mode. Also shown in Figs. 5a–c is the squared
coherence between Re a t( ( ))i and Im a t( ( ))i which is also high over a
range of frequencies close to the POP period, a property also exhibited
by normal modes. In addition, Figs. 5d–f show the phase difference
between Re a t( ( ))i and Im a t( ( ))i which is close to− °90 in the vicinity of
the POP frequency, as required.1 Therefore, according to Fig. 5 the
amplitudes of POPs 1, 2 and 3 generally have properties that mimic
those of real dynamical modes. However, the coherence and/or phase
of POPs 4 and 5 do not, in general, display these same properties (not
shown) so should be treated with caution (von Storch et al., 1995).

Our focus here will be on low frequency variability of the circula-
tion in the central California region, which is controlled primarily by
POP 3. Fig. 6 shows the real and imaginary components of SST, SSH,
SSS and the surface circulation associated with POP 3. As POP 3 evolves
in time, the circulation is described by the sequence

→ − → − → → → …Re Im Re Im Ree e e e e( ) ( ) ( ) ( ) ( )3 3 3 3 3 . Apart from an
arbitrary difference in sign, the real components of the SST and SSS of
POP 3 are similar to that of EOF r2 (Fig. 3) since POP 3 projects most on
this EOF (see Table 2). The imaginary components, however, are dis-
tinct and represent a superposition of several EOFs. Fig. 6 indicates that
as POP 3 evolves in time, a uniformly cool sea surface (Fig. 6a) gives

way to near normal conditions over much of the domain one quarter of
a period later (∼ 2.4 years) with warming near °132 W, °45 N (the ne-
gative of Fig. 6b). Warmer conditions spread primarily from the north
west and south east across the entire region during the next quarter
period (the negative of Fig. 6a) to be replaced by near normal SST
except near °45 N where the surface cools (Fig. 6b), after which the cycle
repeats itself. During the same cycle, higher than normal SSS (Fig. 6c)
over much of the domain becomes concentrated between Cape Blanco
and Cape Mendocino (the negative of Fig. 6d) then give way to less
saline conditions across the domain (the negative of Fig. 6c) before
becoming concentrated between Cape Blanco and Cape Mendocino
(Fig. 6d).

In Section 5 we will focus specifically on upwelling variability along
the central California coast. Therefore, we will focus here in detail on
the circulation variability in this same region. Fig. 7 shows the 3-di-
mensional temperature, salinity and velocity structure of the oscillatory
component of e3 (i.e. the decaying component has been suppressed)
during one complete period over the upper 200 m of the water column
in the region ° − °36 N 44 N, ° − °122 126 W spanning the central Cali-
fornia coast. Fig. 7 reveals that the progression of surface temperature
and salinity anomalies described in relation to Fig. 6 is coherent over
the upper water column, and undergo a sign change near the thermo-
cline. The subsurface anomalies evident in Fig. 7 are coherent across the
entire model domain (not shown). The relative phase between the
different components of the circulation is illustrated in Fig. 8 in the
form of Hovmoller diagrams along °38 N, spanning the entire model
domain, and for two cycles of e3, again with the decaying component of
the POP suppressed. The °38 N line is near the southern end of the re-
gion shown in Fig. 7, although the Hovmoller diagrams in Fig. 8 are
representative of the phase relations within the whole region. Varia-
tions in temperature (Fig. 8b) and salinity (Fig. 8c) are generally in
phase across the entire model domain, with cooler (warmer) conditions
associated with more (less) saline surface waters consistent with Figs. 6
and 7. SST also exhibits a slight eastward phase propagation (Fig. 8b).
In Fig. 8a variations in the depth of the = −σ 26kgm 3 isopycnal surface
are used as a proxy for changes in the depth of the main thermocline,
and west of °127 W are out of phase with SST and SSS by about 1/4
cycle. East of °127 W Fig. 8a shows that anomalies in thermocline depth
display an westward phase propagation, and are more in phase with
variations in SST and SSS near the coast. The progression of tempera-
ture and salinity anomalies east of °127 W associated with e3 through
one cycle in Fig. 7 are therefore accompanied by a low frequency
“sloshing” of the thermocline. While Figs. 7b and c show that cold
temperature anomalies progressively give way to warm anomalies in
the upper 100 m east of °127 W, Fig. 8a shows that the thermocline
generally remains shallower than normal away from the coast (con-
sistent with cold temperature anomalies below 100 m). These warm
anomalies (and the associated salinity anomalies) appear to propagate
in to the region from the north west and south east as described in
relation to Figs. 6a and b. During this time Figs. 7b and c indicate that
the California Current appears to weaken, first at the surface, and then
at depth also. Fig. 8d suggests that movements of the thermocline near
the coast are preceded by approximately one quarter of a period by
changes in vertical velocity adjacent to the coast. The largest variations

Table 2
Period and e-folding decay time (years) for the five POPs (ordered according to increasing
period) for the case =τ 6, N = 10. Also shown is the projection of each POP on the
leading three 3D EOFs.

POP Period (yrs) Decay time (yrs) r1 r2 r3

1 3.6 2.2 0.65 0.13 0.49
2 5.2 2.7 0.59 0.55 0.23
3 9.7 9.6 0.53 0.62 0.33
4 9.9 1.1 0.63 0.37 0.45
5 40.6 3.9 0.23 0.28 0.76

1 The real and imaginary components of a normal mode represent the quadrature
phases of the mode.
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Fig. 5. The cross-power spectral density between the
real and imaginary components of the mode ampli-
tudes (red curves) and the squared coherence (black
curves) for POPs 1, 2 and 3 are shown in (a), (b) and
(c) versus period. The phase difference (degrees)
between the real and imaginary components of the
POP amplitudes are shown in (d), (e) and (f). The
black dashed line indicates the period of the POPe
and the red dashed line denotes a − °90 phase dif-
ference. (For interpretation of the references to color
in this figure legend, the reader is referred to the web
version of this article.)

Fig. 6. The structure of the SST (color), SSH (contours), SSS (color) and surface circulation (streamlines) for the real and imaginary components of POP 3. The contour interval for SSH is
× −5 10 m3 , and black (white) contours indicate positive (negative) values. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of

this article.)
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in vertical velocity are confined to the coast (Fig. 8d) where upwelling
(downwelling) anomalies are associated with cooler (warmer) SST and
more (less) saline surface waters. The periods of anomalous upwelling
and downwelling near the coast are also evident in the vertical sections
of Fig. 7 near °36 N. Fig. 7d shows the structure of the upper ocean
anomalies in temperature, salinity and velocity during peak surface
warming and freshening. At this time the thermocline is deeper than
normal (cf Fig. 8a), and as the warm/fresh anomalies subside, the
thermocline shallows and the equatorward California Current gains
strength (Figs. 7e and f), and coastal upwelling is intensified (Fig. 8d).

4.2. Stochastic forcing of the POPs

According to the hypothesis underlying (1), the POPs are stochas-
tically forced by the noise ξdt . As noted in Appendix C, the stochastic
forcing can be estimated from −

∼du Au. Fig. 9 shows the surface var-
iance of the stochastic forcing of δx mapped back into physical space (cf
(1)). It is important to realize that even though the hypothesis behind
(1) calls for forcing that is white in time, this does not preclude the
stochastic forcing having spatial structure, which is apparent in Fig. 9.
The forcing variance in SST is generally largest offshore and close to the
coast with maximum values ∼ × − −C1.5 10 day3 1. SSS forcing is most
pronounced along the coast of northern California, Oregon and Wa-
shington (∼ × − −5 10 psu day4 1). Interestingly the surface velocity for-
cing has largest amplitude in a region offshore and downstream of Cape
Mendocino where eddy kinetic energy is generally elevated in altimeter
and drifter observations (Kelly et al., 1998) and in the 4D-Var analyses
(N16). There is also a narrow band of elevated surface velocity forcing
variance spanning the CCS poleward of Cape Mendocino. The variance
patterns in SST, SSS and velocity are coherent over the upper

−200 300m of the water column (not shown), while SSH forcing is
relatively incoherent (Fig. 9a).

By definition, white noise forcing contains equal energy at all fre-
quencies, although in this case the highest frequency possible will be

−πmonths 1. It is therefore of interest to quantify the expected response
of the system to forcing at different frequencies. With this in mind,
consider the reduced rank approximation of (1) given by Eq. (B.5):

= +
∼ ξd dt dtu Au .͠ (3)

Suppose that the stochastic forcing ξ dt͠ in (3) is replaced by a harmonic
forcing of the form e dth iωt , where ω is the forcing frequency and Rh
(where R is the matrix of 3D EOFs) describes the 3D structure of the
forcing, which for now is assumed to be arbitrary. Since all of the POPs
of ∼M decay exponentially in time, then after a sufficiently long time
interval the solution of (3) is given by = −

∼ −t e iωu I A h( ) ( )iωt 1 . The ratio
of the system response to the forcing is given by
∥ ∥ ∥ ∥ ≤ ∥ ∥t e ωu h( ) / ( )iωt R where ∥ ∥· denotes the L2-norm which is
equivalent to the energy density norm for the EOF basis functions used
here, and = −

∼ −ω iωI A( ) ( ) 1R is the resolvent matrix. The L2-norm of
the resolvent ∥ ∥ω( )R is given by the largest singular value of

−
∼ −iωI A( ) 1. Furthermore, the resolvent norm ∥ ∥ ∝ω Λ ω( ) 1/dist( , )R ,

where Λ ωdist( , ) is the distance function, and represents the shortest
distance (in the complex plane) between the eigenspectrum of ∼A de-
noted Λ, and the forcing frequency iω. Fig. 10 shows∥ ∥ω( )R vs ω, and
indicates that the maximum response occurs at a forcing frequency
centered on 9.7 years corresponding to the period of POP 3 (see
Table 2). This is consistent with the distance function since the eigen-
frequency λ3 of POP 3 is much closer to the forcing frequency iω than
that of POP 4, which recall has a similar period but is damped very
quickly.

In contrast, Fig. 10 also shows the resolvent norm of a LIM con-
structed from a non-data assimilative run of the model using the same
prior forcing and open boundary conditions, and computed in exactly
the same way as the LIM derived from the 4D-Var analyses. In this case
the resonant peak near 10 years is absent, indicating that POP 3 is
present only in the LIM derived from the 4D-Var analyses, and that the
POPs are not merely mirroring the low frequency response of the model
to surface forcing.

Based on Fig. 10, we expect a priori that the response of the CCS
circulation to white noise forcing will be dominated by the decadal
variability associated with POP 3. With this in mind, Fig. 11 shows the
amplitude a3 of POP 3 over the period 1981–2010. Recall that the
natural tendency for POP 3 will be to decay in time. However, the
decadal component of the stochastic forcing continually excites POP 3,
so the variations in amplitude of e3 in Fig. 11 over time are controlled
by the time variations of the stochastic forcing. This can be further

Fig. 7. A 3-dimensional view of the upper ocean structure of POP 3 off the central California coast. Temperature anomalies are shown in color, salinity anomalies as contours (negative
values are dashed, and the contour interval is 0.02), and the 3-dimensional velocity anomalies as arrows. The size of the arrow is indicative of the relative magnitude of the velocity, and
the vertical velocity component is scaled by 105 for ease of viewing. Panels (a) to (f) show the time evolution of the oscillatory component of POP 3 separated by intervals of 1/6 of a
period (∼ 1.6 years). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

W.J. Crawford et al. Deep-Sea Research Part II 151 (2018) 16–36

23



illustrated by considering the projection of POP 3 onto the 3D EOFs.
Table 2 indicates that EOFs r1 and r2 project considerably onto each
POP, particularly POP 3. Fig. 12a shows a phase plot of the amplitude of
r1 and r2 during two cycles of POP 3. The red ellipse represents the
oscillatory component of POP 3 alone (as described by Im λ( )3 ), and
illustrates the relative contribution of these two EOFs to POP 3 over
time. The time required to complete one orbit around the ellipse is 9.7
years. The blue curve shows how the decay in POP 3 over time is
mirrored by the amplitudes of EOFs r1 and r2. The influence of the
stochastic forcing in the −r r1 2 phase plane of POP 3 is shown in
Fig. 12b. While the variations in EOF amplitudes are somewhat
random, the tendency of the system response to follow the red ellipse in
Fig. 12b that describes the oscillatory component of POP 3 is quite
obvious. The circulation associated with the stochastically forced fluc-
tuations in the amplitude of POP 3 are illustrated in Fig. 13 at °38 N.
Comparing Fig. 13 with Fig. 8 shows how the oscillation described by
POP 3 is continually excited and modulated by the stochastic forcing.

Obvious candidates for the forcing of POP 3 are ENSO, the NPGO
and the PDO which are all known to influence the CCS circulation, as
discussed in Section 1. Fig. 14 shows wavelet power spectra of the MEI,
NPGO index and PDO index during the period 1980–2010. The width of
the peak in Fig. 10 indicates that forcing with a period in the range
∼ −8 12 years will be effective at exciting e3. Fig. 14 shows that both
the NPGO and PDO have significant power in this frequency band,
particularly during the period 1990–2005 when the amplitude of e3 is
relatively high (cf Figs. 11 and 13). Even though the PDO index does

not display a peak in power in the 8–12 year band like the NPGO index,
it is important to realize that any power in this range can be amplified
by POP 3 as shown in Fig. 10. ENSO, on the other hand, has a broad
band of power between 3- and 5-year periods (Fig. 14a) that will be
quite effective at exciting e1 and e2 which, recall have periods of 3.6 and
5.2 years respectively (Table 2), although these modes are damped
within a couple of years, which explains the absence of a peak at these
frequencies in Fig. 10.

To quantify the relative contribution of the PDO, NPGO and ENSO
in exciting POP 3, a regression analysis was performed between each
climate mode index in Section 3.2 and the amplitude of the component
of stochastic forcing = −

∼f de u A( ) ( )H
3 3

† that projects directly onto POP
3. To isolate the low frequency components, the time series of f3 and
each climate index were smoothed using a 5-year running mean prior to
the regression analysis. For example, Fig. 15a shows the amplitude of
the forcing of POP 3 in SST associated with a one standard deviation
change in the amplitude of the PDO index. Also shown in Fig. 15a is the
fraction of variance in POP 3 SST forcing that is directly explained by
the PDO index. The POP forcing takes the form of a 3-dimensional,
multivariate, time evolving field so references here to forcing by the
PDO are interpreted as the projection of the regional expression of the
basin-wide circulation anomalies associated with the PDO onto the POP
forcing fields. With this in mind, Fig. 15a indicates that the positive
phase of the PDO is associated with a positive forcing of SST, and up to

−35 40% of the POP 3 SST forcing can be explained by the PDO.
Fig. 15b shows the same analysis for the NPGO. In general, the pattern

Fig. 8. Hovmoller diagrams of anomalies in (a) thermocline depth, (b) SST, (c) SSS and (d) w at 40 m at °38 N for POP 3 over a 20 year period. The decaying component of the POP has
been suppressed so as to highlight the oscillatory component. Positive (negative) thermocline depth anomalies correspond to a shallower (deeper) thermocline.
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of SST forcing associated with NPGO is similar to that of the PDO, but in
this case the positive phase of the NPGO is associated with a negative
forcing of the POP 3 SST. Therefore, the opposite phases of the PDO and
NPGO tend to reinforce the POP 3 circulation anomalies, although

Fig. 15b shows that the amplitude and fraction of the e3 forcing ac-
counted for by the NPGO is significantly lower than that of the PDO.
The pattern of POP 3 SST forcing associated with the MEI is positive and
similar to that of the PDO (not shown), since the correlation between
the MEI and the PDO index is 0.6. However, the amplitude and fraction

Fig. 9. Standard deviation of the stochastic forcing for (a) SSH, (b) SST, (c) SSS, (d) surface u and v combined.

Fig. 10. The L2-norm of the resolvent = −
∼ −ω iωI A( ) ( ) 1R vs the period π ω2 / of the

forcing for a LIM computed from the 4D-Var analyses (solid line) and from a non-as-
similative run of the model (dashed line).

Fig. 11. Time series of the real (solid line) and imaginary (dashed line) components of the
amplitude of POP 3.
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of variance explained by the MEI POP 3 forcing is similar to that of the
NPGO. These same relationships between each climate index and the
forcing of POP 3 apply to other state variables also, and extend well
below the surface. For example, Fig. 15c shows the amplitude of POP 3
temperature forcing associated with the PDO along a vertical section at

°38 N. The forcing changes sign at the depth of the thermocline, and the
variance explained remains high throughout the water column. Even
though Fig. 14 indicates that the NPGO has more power at decadal
periods than the PDO and MEI, the spatial structure of the forcing is

also very important (Farrell and Ioannou, 1996; Chhak et al., 2009a,
2009b). This can be quantified in terms of the stochastic optimals of (1)
(Kleeman and Moore, 1997), but this is beyond the scope of the present
paper.

Fig. 15d shows power spectra of the amplitude of the POP 3 forcing
showing that it is elevated at frequencies close to those where the PDO
and NPGO index have elevated power (Fig. 14). Hence, the POP 3 can
very effectively resonate in response to circulation anomalies induced
by the PDO, NPGO and to some degree by ENSO, even though the

Fig. 12. (a) A phase diagram of the ampli-
tude of EOFs r1 and r2 for two cycles of POP
e3. The red curve shows the oscillatory
component of e3 and the blue curve includes
the decaying component. The black circle
indicates the starting point, and progression
around the ellipse is clockwise. (b) A phase
diagram of the amplitude of EOFs r1 and r2
based on the amplitude of e3 during the
period 1981–2010 (blue curve). The red
curve is the same as that in (a). (For inter-
pretation of the references to color in this
figure legend, the reader is referred to the
web version of this article.)

Fig. 13. Hovmoller diagrams of anomalies (a) thermocline depth, (b) SST, (c) SSS and (d) w at 40 m at °38 N associated with the time varying amplitude of e3 during the period
1981–2010. Positive (negative) thermocline depth anomalies correspond to a shallower (deeper) thermocline.
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power at decadal periods in the MEI is relatively low (Fig. 14a).

5. Decadal variability in coastal upwelling

Using the same 4D-Var analyses, Jacox et al. (2014) hereafter J14
have documented low frequency variability in coastal upwelling along
the central and northern California coast that is apparently correlated
with ENSO, PDO and NPGO. Fig. 16 shows a time series of w averaged
over the central California region indicated in Fig. 1 that is associated
with the leading EOF of w at 40 m depth and the PC time series com-
puted by J14. The PC reported by J14 also has an upward linear trend
over the same period. However, to be consistent with the LIM (which
recall is constructed from detrended PC time series), the linear trend
was been removed from the time series shown in Fig. 16. When the time
series is positive (negative), upwelling is enhanced (suppressed) along
the entire central California coast extending 50 km off-shore, while
between 50 and 200 km, upwelling is suppressed (enhanced).

Much of the variability in coastal upwelling documented by J14 is
captured by a combination of POPs e1, e2 and e3 as indicated in Fig. 16
which also shows w associated with the superposition of these three
modes averaged over the same region shown in Fig. 1. The correlation
between the time series in Fig. 16 is 0.84. However, much of the
variability in this region captured by the leading EOF of w computed by
J14 can be explained by e3, and the correlation between the time series
of w due to e3 alone with w from J14 is 0.6 (not shown). The influence
of POP 3 on coastal upwelling is illustrated in Fig. 17 which shows the
phase of w associated with POP 3 and indicated that w varies coherently
along the coast poleward of Point Conception (notice the phase at
∼ °40 N changes from near + °180 to − °180 which are equivalent).

J14 note that the largest anomalies in coastal upwelling typically
occur when the PDO and NPGO are out of phase, in agreement with the
relative influence of the PDO and NPGO on POP 3 (Section 4.2). For
example, during 1991–95, Fig. 16 indicates that total upwelling was
suppressed in the central California region. Fig. 18 shows the

circulation anomalies in w, SST, SSS and thermocline depth during this
period that are associated with the superposition of e1, e2 and e3. The
pattern of upwelling anomalies (Fig. 18a) is similar to that reported in
J14. At the same time surface waters are warmer (Fig. 18c) and fresher
(Fig. 18d) than normal over the whole domain, and the thermocline is
deeper than normal (Fig. 18b). The vertical sections of temperature and
salinity in Figs. 18e and f reveal that the surface anomalies are coherent
over the upper 100–200 m.

Conversely, during the 1998–2002 time period total upwelling is
weaker than normal along the northern California, Oregon and
Washington coasts with generally colder, more saline surface waters
across the entire region and a shallower than normal thermocline.
Essentially, the reverse of that shown in Fig. 18.

Much of the variability in upwelling in Fig. 16 is associated with e3
(r = 0.6). The relationship between w and other components of the
circulation in the central California coastal region of Fig. 1 associated
with e3 is shown in Fig. 19 which demonstrates the phase relationship
between different aspects of the coastal response. The phase of SST and
w is consistent with upwelling induced cooling. SSS and thermocline
depth on the other hand generally lag behind w by ∼ −1 2 years.

The coastal upwelling changes documented by J14 therefore appear
to be part of CCS-wide changes in the circulation that are captured in
detail by the POPs. Much of this variability is captured by mode e3
alone which, as shown in Section 4.2, is preferentially excited by the
decadal components of the stochastic forcing acting on the system as-
sociated with the PDO, NPGO and ENSO. During the period 1990–2010,
the PDO and NPGO were generally out of phase which had the effect of
increasing the amplitude of the POP 3 circulation anomalies, which is
very evident in Fig. 13. This also agrees with the analysis of Macias
et al. (2012) who found that low-frequency variability in coastal up-
welling along the central California coast is negatively (positively)
correlated with the PDO (NPGO).

The general solution of the stochastic differential Eq. (1) is given in
Appendix B by Eq. (B.2). The second term on the right hand side of
(B.2) shows that the circulation at any time depends on the time history
of the stochastic forcing and the stochastically integrated response of
the POPs. Therefore, the response observed at any particular time will
depend on forcing by the PDO and NPGO (and ENSO) over a range of
times in the past. This can obscure the interpretation of the observed
circulation, frustrating simple correlation analyses. For example, Eq.
(B.2) shows that the response of the system due to stochastic forcing of
e3 is given by the integrated time history of the integrand

′ = ′− ′
∼

ξk t e t( ) ( )t tA( )
3 , where ξ3 is the component of stochastic forcing that

projects onto e3. Fig. 20 shows times series of the contribution of ′k t( ) to
w for all times ′t prior to Jan 1999 (Fig. 20a), the time of onset of
suppressed upwelling, and Jan 2005 (Fig. 20b), the peak of a period of
suppressed upwelling. Fig. 20 reveals that there are sizable contribu-
tions associated with the stochastic excitation of e3 during the ∼ 5
years preceding the circulation anomalies observed in Jan. 1999 and
2005, consistent with the long damping time of this mode (Table 2).

6. Summary and conclusions

Multivariate 3D EOFs were used to quantify the circulation varia-
bility captured by 4D-Var estimates of the CCS on various time scales
over the period 1980–2010. The 3D EOFs uncover a far richer and more
complex circulation environment than is revealed by more conven-
tional 2D EOF analyses of surface fields alone. No single multivariate
3D EOF mode is able to isolate a single documented mode of climate
variability, although variations in the amplitude of the leading EOF
appear to correlate well with the observed downward trend in the PDO
during the three decades considered.

Although many aspects of the 3D EOFs correlate well with ENSO,
the NPGO and the PDO (which largely characterize climate variability
in the North Pacific), a high level of correlation with the PDO and

Fig. 14. Wavelet analyses of the MEI, NPGO index and PDO index for the period
1980–2010. In each case a Paul wavelet was used to provide good resolution in time. The
regions enclosed by bold contours are significant at the 95% level. While each index time
series spans a longer period than the 4D-Var analyses, only the portion of the wavelet
spectra for the period 1980–2010 is shown here. The power averaged over time at each
frequency is also shown to the left of each wavelet plot, and is an average over the full
duration of each time series.
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NPGO is not necessarily to be expected since they are both defined in
terms of EOFs of surface fields alone, with no recourse to subsurface
information or ocean currents. To unravel the nature of the circulation
variability in more detail, we computed the POPs of a LIM based on the
PC time series of the leading 3D EOFs of the 4D-Var analyses.

The POPs reveal that the low frequency circulation anomalies can
be described by three distinct modes of variability with periods ranging
from ∼ −3.5 10 years. In addition, POP 3 which has the lowest

frequency can be resonantly excited with relative ease by virtue of its
slow decay rate, and essentially any forcing in the system with a period
of ∼ −8 12 years can be amplified by two orders of magnitude. Obvious
potential sources of forcing in this frequency range are the regional
expressions of the basin wide climate modes identified with the PDO,
NPGO and ENSO, all of which possess power in the ∼ −8 12 years
range. The POP 3 forcing identified here, by necessity, takes the form of

Fig. 15. Forcing of SST based on a linear regression between low-pass filtered forcing amplitude of POP3 and (a) the PDO index, (b) the NPGO index. The forcing shown results from a
positive standard deviation change in the climate index. White contours indicate 100 times the coefficient of determination ( × r100 2 values) and represent the percentage of variance of
SST forcing of POP 3 explained by each index. (c) Same as (a) but showing a vertical section along °38 N of temperature forcing by the PDO. (d) Power spectra of the real (red) and
imaginary (blue) components of the POP 3 forcing amplitude. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 16. The vertical velocity based on the first principal component time series and EOF
w at 40 m depth over the region indicated in Fig. 1 from Jacox et al. (2014) after the
linear trend has been removed (solid line). Time series of w associated with the super-
position of e1, e2, and e3 averaged over the same region (dashed line).

Fig. 17. The phase (degrees) of vertical velocity at 40 m associated with POP 3. The phase
is given by − Im w Re wtan ( ( )/ ( ))1 . The phase in deep offshore regions where w is very small
is not plotted.
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3-dimensional, time-dependent fields. Therefore, when we refer to
forcing by the PDO and NPGO we are referring to the regional com-
ponents of basin scale 3D-circulation anomalies associated with the
PDO and NPGO circulation changes, which in turn are associated with
changes in the large-scale atmospheric circulation and ocean surface
forcing as discussed in Section 1. Interestingly, the PDO and NPGO

Fig. 18. Circulation anomalies associated with the
superposition of e1, e2, and e3 averaged over the
period 1991–95 when upwelling is suppressed along
the California coast (a) w at 40 m, (b) SST, (c) SSS
and (d) thermocline depth. Also shown are vertical
sections of (e) temperature and (f) salinity over the
upper 500 m every °2 of latitude.

Fig. 19. Time series of anomalies in SST, thermocline depth, SSS and w at 40 m associated
with e3 averaged over the region shown in Fig. 1. Positive (negative) thermocline depth
anomalies correspond to a shallower (deeper) thermocline.

Fig. 20. Time series of the contribution to w from ′k t( ) of the stochastic forcing associated
with e3 through time to the response in w observed in (a) Jan 1999 and (b) Jan 2005.
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forcing of POP 3 reinforce each other when the PDO and NPGO are out
of phase, leading to extended periods of enhance or suppressed up-
welling anomalies along the coast of central California, Oregon and
Washington. This in turn is accompanied by low frequency anomalies in
temperature, salinity and thermocline depth in line with those docu-
mented previously by J14.

The idea that much of the low frequency variability of the CCS is
described by a resonantly forced mode of variability represents a new
paradigm linking the basin scale climate modes and the coastal circu-
lation, and suggests that in the CCS much of the circulation variability
arises from an inherent, perhaps coastally trapped, mode of coastal
variability that is resonantly forced by the regional expression of the
basin scale climate modes. Therefore, while there have been several
notable attempts to relate changes in the CCS circulation to the basin
scale variability associated with the PDO and NPGO, the stochastically
forced nature of the CCS variability will frustrate traditional attempts to
understand the circulation using correlation analysis.

The true nature of the POPs identified here is not fully understood.
It is possible that the POPs we have identified are simply inherent
modes of oscillation of the particular model configuration used here
(analogous to traditional basin modes of a bounded basin, Pedlosky
(1979). However, this seems unlikely since a LIM derived from a non-
data assimilative model run does not reproduce the same POPs (cf
Fig. 10). The role played by the observations during data assimilation in
controlling the POP amplitudes has been further explored by Moore
et al. (2017) who have investigated the impact of the observing system

on various aspects of the circulation estimates used in the present
analysis. Both satellite SST and SSH observations were found to play the
largest role in capturing POP 3, although in situ measurements at
∼ 100 m depth were also found to be potentially important, since they
are the only observations to provide information about the thermocline
depth and upper ocean heat content. Nonetheless, since the mean cir-
culation and bathymetry of the region is complex, further work is
needed to identify the detailed nature of the POPs.

POPs 1, 2 and 3 are robust across a wide range of parameters which
adds confidence to the findings of this study. While we have con-
centrated here primarily on the decadal POP, the POPs 1 and 2 with
periods of 3.6 and 5.2 years are also of interest since they appear to
capture CCS variability associated with ENSO (not shown). This will be
the topic of a future study.

Finally we note that the memory imparted on the CCS circulation
anomalies by the low frequency POPs identified here suggests that there
may be potential to use the LIM to make seasonal predictions of the low
frequency CCS circulation anomalies. C.3 (Fig. C.3) suggests that the
LIM is able to hindcast the circulation anomalies for lead times up to 12
months, significantly beating persistence.
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Appendix A

Computation of 3D multivariate EOFs

Following the notation used in N16, the ROMS state-vector is denoted by = T S u v ζx ( , , , , )T and comprises all grid point values of temperature T,
salinity S, the two horizontal components of velocity (u,v), and the sea surface displacement, ζ. Here, we compute the EOFs of the multivariate
covariance matrix:

∑ ∑= − −
= =

n
C w w w w1 ( )( )

i j
i j j i j j

T

1

31

1

12

, ,
(A.1)

where =w W xi j i j,
1
2 , and xi j, is the monthly mean state-vector for month j, year i for the 31-year period 1980–2010 which yields a sample size n =

372; = ∑ =
w w /31j i i j1

31
, is the monthly mean climatology for month j computed from the 31-year sequence of analyses; and W

1
2 is the diagonal matrix

of weights applied to each state-vector element. Since the elements of x have different physical dimensions, the primary purpose of W
1
2 is to

transform x into the vector w in which all elements are appropriately rescaled to be dimensionless or to have the same units. By definition, the 3D
multivariate EOFs are the eigenvectors of C such that = νCs sk k k. The EOFs sk can be transformed back to familiar physical units according to

=
−r W sk k

1
2 , and the EOFs rk are orthonormal with respect to W so that = δr Wri

T
j i j, .

A.1. The Choice of W

Several choices for the weight matrix W were considered. In the first case, denoted W1, the weight matrix W implicit in (A.1) was chosen so that
the trace of the covariance matrix yields the perturbation energy per unit volume (hereafter referred to as the energy density) given by:
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(A.2)

where TΔ i j, , SΔ i j, , uΔ i j, , vΔ i j, and ζΔ i j, are respectively the temperature, salinity, zonal velocity, meridional velocity, and free surface height component
of −x x( )i j j, ; λ λ( , )w e and ϕ ϕ( , )s n define the west-east longitudinal and south-north latitudinal extent of the model domain; H λ ϕ( , ) is the ocean depth;
α is the thermal expansion coefficient; β is the salinity contraction coefficient; N2 is the squared Brunt-Väisälä frequency; V is the ocean volume of the
domain; and all other symbols have their usual meaning. In the case of W1, representative values of α, β and N2 were chosen corresponding to

= × − −α 1.6 10 K4 1, = × −β 7.6 10 4 and = − −N 10 s2 5 2. From (A.2), = ∑ ∑= =
nCTr( ) 1/ i j i j1 1

31
1

12
,E which is the total variance measured in terms of the

energy density. Using this definition of W1, allowance is made for the difference in physical units of each state variable, and following North et al.
(1982), each state variable is appropriately weighted by the volume of each model grid cell. The perturbation energy density i j,E defined by (A.2) is
considered to be an appropriate norm because of the obvious significance and fundamental importance of energy for describing the ocean circu-
lation. A time series of = − −E x x W x x( ) ( )i j j

T
i j j1 , 1 , is shown in Fig. A.1 and illustrates how the monthly mean energy density varies in time during

WCRA31.
The second choice of W, denoted W2, was also based on the energy norm (A.2) except in this case the spatially varying time mean values of α, β

and N2 were used. A time series of = − −E x x W x x( ) ( )i j j
T

i j j2 , 2 , is also shown in Fig. A.1. While the amplitude of E2 is smaller than E1, the two time
series are highly correlated (r = 0.88). The two additional choices of W considered were based on non-dimensionalizing the elements of x using
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−σ dV V/x
1 where σx is the standard deviation of each state-vector variable, and dV V/ is the fractional volume of each grid cell. In the case of W3

1
2 , a

single value of σx based on the standard deviation computed from all grid points was used, while for W4

1
2 the σx were the standard deviations

computed at each model grid point. Time series of = − −E x x W x x( ) ( )i j j
T

i j j3 , 3 , and = − −E x x W x x( ) ( )i j j
T

i j j4 , 4 , are shown in Fig. A.1. The correlation
between E3 and E4 is 0.84 indicating that the variability captured by either choice of W3 and W4 is similar. The correlations between the energy-based
time series E1 and E2 and the standard deviation-based time series E3 and E4 are ∼ 0.5. These correlations increase to ∼ −0.7 0.8 if a 12-month
running mean is applied to each time series, which indicates that each norm is capturing similar low frequency variability.

The 3D multivariate EOFs are by definition the eigenvectors of C such that = νCs sk k k. In the case of C1 and C2, all of the elements of sk have the

units of −(Jm )3
1
2 , while in the case of C3 and C4 the sk are dimensionless.

By and large, the leading EOFs that emerge are relatively insensitive to the choice of W. The first two EOFs, r1 and r2, occupy the same position
within the spectrum in each case, while the higher order EOFs some times trade positions. In the POP analysis of Section 4, we consider the leading
10 EOFs. The fraction of CTr( ) accounted for by the leading 10 EOFs is highest in the case of W1 (57%) (compared to 50% for W2, 46% for W3 and
39% for W4), so this is the case that we focus on here.

A.2. The Lanczos algorithm

The eigenvectors of the covariance matrix C defined by (A.1) were computed iteratively using the Lanczos algorithm (Golub and Van Loan,
1989). The basis of the Lanczos algorithm is a reduced rank factorization of C so that:

≃C V T Vm m m
T (A.3)

where m refers to the number of iterations; Vm is a matrix where each of the m columns is a Lanczos vector v ; and Tm is an m × m tridiagonal matrix.
The Lanczos vectors are orthonormal so that =V V Im

T
m m, and satisfy the Lanczos recursion relation:

= + ++ − −γ δ γCv v v vi i i i i i i1 1 1 (A.4)

where =δ v Cvi i
T

i are the elements of the leading diagonal of Tm and =γ a a( )i i
T

i
1
2 are the off-diagonal elements where = − − − −δ γa Cv v vi i i i i i1 1. Each

iterate of the Lanzcos algorithm yields an additional Lanczos vector according to the Lanczos recursion relation (A.4). The algorithm is initialized by
choosing v1 to be a random vector, and in the calculations presented here, the Lanczos vectors were reorthogonalized at the end of every iteration
following Fisher (1997, pers. comm.).

The eigen pairs of the reduced rank approximation of C in (A.3) are given by =ψ ψμV T Vm m m
T

k k k, and →ψμ ν s( , ) ( , )k k k k , the true eigen pairs of C,
as m approaches the dimension of C. The problem of identifying the eigen pairs of (A.3) reduces to finding the eigenvalues and eigenvectors of the
much smaller m×m matrix Tm since C and Tm have the same eigenvalues in the limit as m approaches the dimension of C. Specifically, = μT y ym k k k,
and the approximate eigenvectors of C are given by =ψ V yk m k. As the number of iterations m increases, the eigen pairs ψμ( , )k k become progressively
better approximations of the true eigen pairs ν s( , )k k . The error in μk and ψk can be formally quantified according to = ∥ ∥+ ψγ μv eϵ ( ) /k k m m

T
k1 1 which

follows directly from (A.4), where em is the unit vector with all zero elements except the mth element, and μ1 is the largest eigenvalue of Tm.
To illustrate, Fig. A.2a shows estimates of the leading eigenvalues of C1 based on W1 computed using m = 60 iterations. The formal error

estimates ϵk are shown in Fig. A.2b and indicate that < −ϵ 10k
10 for the leading 20 eigenvectors, which lends confidence to the reliability of the EOFs

presented in Section 3. Figs A.2a and b also show the leading eigenvalues and error estimates for the case m = 120 to illustrate how the estimates of
μk are refined by further Lanczos iterates. The leading 30 or so eigenvalues and eigenvectors (not shown) change very little (Fig. A.2a) while the
accuracy of the eigen spectrum improves substantially in the range = −k 20 50 (Fig. A.2b).

Fig. A.2c shows the cumulative percent variance ∑ =
μ C100 /Tr( )i

M
i1 1 (i.e. perturbation energy density) versus M explained by the leading

= …M 1, ,60 eigenvectors, which as expected slowly asymptotes toward a value of 100%. As the number of iterations increases, the accuracy of the
trailing eigenvalues increases, and the cumulative variance explained moves closer to 100% as illustrated in Fig. A.2c which also shows the cu-
mulative variance for the case where m = 120.

Fig. A.1. Times series of E1 (solid black curve), E2 (red curve), E3 (dashed black curve) and E4 (blue curve).
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Appendix B

Linear inverse model computation

Following the notation introduced in Appendix A, let x represent the time mean state vector, and = −δx x x denote departures of x from the
mean. If δx is in statistical equilibrium, the hypothesis set forth in linear inverse modeling is that δx can be modeled as a stable, stochastically forced,
linear system (i.e. as a first-order autoregressive or Markov process), so that:

= + ξdδ δ dt dtx A x (B.1)

where A is the dynamical system matrix that describes the time rate of change of δx, and ξdt is a white noise (in time) stochastic forcing. If A is time
invariant, the solution of (B.1) is given by:

∫+ = + ′ ′
+ − ′ ξδ t τ e δ t e t dtx x( ) ( ) ( ) .τ

t

t τ t tA A( )
(B.2)

The eigenvectors of A (or equivalently e τA ) are often referred to as normal modes. The leading normal modes can be computed iteratively in
ROMS using the tangent linear model linearized about an appropriate basic state circulation (Moore et al., 2004). However, for large dimensional
systems, like that considered here, such calculations are computationally and technically very challenging. Instead, the leading normal modes can be
approximated using a linear inverse model (LIM). Following von Storch et al. (1995), consider the expected value of (B.2) after both sides are right
multiplied by δ tW x ( )T (where W is the weight matrix in (A.1)) so that:

∫〈 + 〉 = 〈 〉 + 〈 ′ ′ 〉
+ − ′ ξδ t τ δ t e δ t δ t e t dt δ tx W x x W x W x( ) ( ) ( ) ( ) ( ) ( ) .T τ T

t

t τ t t TA A( )
(B.3)

Since δ tx( ) is statistically independent of the stochastic forcing ξ for ′ ≥t t (ı.e. δx is a non-anticipating function), then for white noise the last
term in (B.3) is identically zero (see Gardiner, 1985, p90, Section 4.2.6(e)) which leads to:

= = + −e t τ tM C C( ) ( )τA 1 (B.4)

where = 〈 〉t δ t δ tC x W x( ) ( ) ( )T is the zero-lag covariance matrix, and + = 〈 + 〉t τ δ t τ δ tC x W x( ) ( ) ( )T . Eq. (B.4) shows that the normal modes can be
approximated as the eigenvectors of M computed from the covariance matrix tC( ) and +t τC( ). However, (B.4) can still be difficult to use in practice
since −tC( ) 1 will be difficult to evaluate for a large dimensional system. Following von Storch et al. (1995) and Penland and Sardeshmukh (1995), the
dimension of the problem can be greatly reduced by recasting (B.1) in terms of the EOFs of tC( ). Following Appendix A, the departures of the state
vector from the mean can be expressed as =δ t tx Ru( ) ( ) where R is the matrix of 3D EOFs ri and =t u tu( ) ( ( ))i is the vector of principal component
time series. In this case (B.1) becomes:

= +
∼ ξd dt dtu Au ͠ (B.5)

where =
∼ −
A R W W AW W R( )T

1
2

1
2

1
2

1
2 which has the same eigenvalues as A. The normal modes of (B.5) can be approximated as before in terms of the

zero-lag covariance matrix as the eigenvectors of:

= +
∼ −t τ tM Φ Φ( ) ( ) 1 (B.6)

where = 〈 〉t t tΦ u u( ) ( ) ( )T and + = 〈 + 〉t τ t τ tΦ u u( ) ( ) ( )T . By virtue of the orthogonality of the PC time series, −tΦ( ) 1 reduces to a diagonal matrix
and the dimension of the problem can be greatly reduced by retaining only the leading 3D EOFs of tC( ).

Fig. A.2. (a) Estimates of the leading eigenvalues of C1 computed using the Lanczos algorithm for m= 60 iterates (solid curve) and m= 120 iterates (dashed curve). (b) Formal estimates
of the error ϵ associated with each eigen pair for m = 60 (solid curve) and m = 120 (dashed curve). (c) The fraction of variance CTr( )1 explained by the first M eigenvalues versus M for
the case m = 60 (solid curve) and m = 120 (dashed curve).
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Appendix C

Tests of the linear inverse model (LIM) assumptions

As discussed by Penland and Sardeshmukh (1995), there are a number of fairly stringent tests that can be performed in order to test the
hypothesis underlying (B.1), namely that the circulation anomalies δx can be modeled as a linear, stochastically forced system. This is equivalent to
assuming that the circulation is described by an order one Markov process, often also referred to as a lag-1 autoregressive process (AR(1)). This
appendix documents the results of various tests that were performed to test the validity of this hypothesis. In all of the calculations presented here, a
linear trend was removed from each PC time series tu( ).

C.1. Sensitivity of POP frequencies to time-lag τ and number of EOFs

We will first consider the sensitivity of the eigenvalues λ of the LIM to the choice of time-lag, τ, and the number EOFs retained, N. Fig. C.1a shows
the spectrum of the eigenvalues of∼M in (B.6), i.e. the POP frequencies, for a LIM using N= 14 EOFs. The lag-time τ varies between 6 and 20 months,
and the eigen frequencies for each τ are shown in different colors, changing gradually from red for =τ 6 to blue for =τ 20. Three distinct branches of
eigen frequencies are apparent that are labeled POP 2, POP 3 and POP 5 corresponding to the POPs identified in Table 2. Fig. C.1a indicates that the
period ( π Im λ2 / ( )) of POPs 2 and 3 is relatively insensitive to τ, while the decay time ( Re λ1/ ( )) increases with τ (i.e. the POPs become increasing more
stable). Both the period and decay time of POP 5 are sensitive to τ, and this mode is not reliable until its period approaches ∼ 25 years. Fig. C.1b
shows the same information for the LIM configuration used in Sections 4 and 5 where the PC time series were smoothed using a 12 month running
mean prior to constructing the LIM. In this case, N= 10 and four distinct branches of solutions emerge corresponding to POPs 1, 2, 3 and 5 identified
in Table 2 for the case =τ 6.

The sensitivity of the POP 3 period and decay time to the number of EOFs, N, used in the LIM is shown in Fig. C.1c for the case using unsmoothed
PC time series and =τ 12, Both the period and decay rate are relatively insensitive to the choice of N. The decay rate of POP 3 is more sensitive to N
when the PC time series are smoothed using a 12 month running mean as shown in Fig. C.1d. The dependence of the period and decay time on the
averaging period tf used in the running mean applied to the PC time series is shown in Fig. C.1e for the case N = 10, =τ 6. For ≥t 12f months the
period of POP 3 is relatively insensitive to further increases in tf, while the decay time continues to increase (i.e. POP 3 becomes increasingly less
damped). In Sections 4 and 5 N = 10, =τ 6 and tf = 12 was used.

C.2. Sensitivity of resolvent norm to the POP decay rates

As shown in Section 4.2, the resolvent norm∥ ∥=∥ − ∥−ω iωI A( ) ( ) 1R provides a measure of the response of the system (B.1) to stochastic forcing
with a frequency ω. The resonant norm of the system to forcing depends on the decay rate of each POP. As shown in Fig. C.1, the POP decay rates are
sensitive to the choice of the number of EOFs used, the lag-time τ and whether or not the PC time series are smoothed prior to constructing the LIM.
To further illustrate this important point, Fig. C.2 shows the resolvent norm for two additional cases based on LIMs that used unsmoothed PC time
series, =τ 20 months and N = 14 or 24 EOFs. In the case N = 14, =τ 20 the resonant response of POP 3 is reduced compared to the case considered
in Sections 4 and 5 (also shown in Fig. C.2 for reference). Conversely, increasing the number of EOFs N to 24 enhances the resonant response of not

Fig. C.1. POP spectra for LIMs using (a) unsmoothed
PC time series and N = 14, and (b) PC time series
smoothed using a 12 month running mean and N =
10. POP frequencies are shown for τ ranging from 6
to 20 months. The color of the symbol changes gra-
dually from red to blue over this interval. The
branches labeled 1–5 correspond to the POP numbers
identified in the main text. The period (solid line)
and decay time (dashed line) for POP 3 versus the
number of EOFs N used in the LIM are shown in (c)
for the case using unsmoothed PC time series and

=τ 12, and (d) for the case using a 12 month running
mean of the PC time series and =τ 6. The period
(blue) and decay time (green) of POP 3 for N = 10,

=τ 6 versus the running mean averaging period tf
(months) is shown in (e).
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only POP 3, but also POPs 1 and 2. An additional resonance peak appears in this case associated with POP 5 which now has a period of 23 years. For
this choice of parameters POP 5 is reliable based on the coherence and phase properties of its amplitude time series (see Section 4). POP 5 appears
robust for some range of parameters and deserves further investigation since Fig. 14 suggests that it could also resonate in response to the NPGO.
However, POP 5 does not contribute much to the coastal upwelling variability discussed in Section 5.

C.3. Predictive skill of the LIM

An important test of any LIM is the ability of∼M to predict the PC time series (Penland and Sardeshmukh, 1995; Winkler et al., 2001). Using N =
14, which accounts for 62% of the energy density, LIMs were constructed using =τ 3, =τ 6 and =τ 12 months, denoted ∼M(3), ∼M(6) and ∼M(12)
respectively. The skill of predictions (hindcasts) made by each LIM was then assessed. To ensure that each ∼M is independent of the data being
predicted, the data during the hindcast period were withheld during the calculation of each∼M. Fig. C.3a shows the root mean square (rms) error in
each component of u (i.e. the amplitude of each EOF r) for the case of 12-month hindcasts using ∼M(12). The LIM is able to beat the skill of a
persistence forecast for the amplitude of each EOF. It is also possible to make a 12-month forecast via two consecutive applications of∼M(6) twice (i.e.
using∼M(6)2) or four consecutive applications of∼M(3) four times (i.e. using∼M(3)4). The skill of hindcasts made in this way is also shown in Fig. C.3a
which shows that the forecast skill is similar to that obtained using ∼M(12). This demonstrates that the properties of the LIM are insensitive to the
time-lag chosen. Fig. C.3b shows the rms errors for 6-month forecasts based on ∼M(6) and ∼M(3)2, while Fig. C.3c shows the rms error of 3-month
forecasts based on∼M(3). In all cases, the LIM is able to beat the skill of persistence, although for 3-month forecasts persistence is almost as good. Fig.
C.3b also confirms that the LIM is insensitive to the time-lag, τ.

Fig. C.2. The L2-norm of the resolvent vs the forcing period for three different LIMs computed from the 4D-Var analyses for the case N= 10, =τ 6 and smoothed PC time series (black), N
= 14, =τ 20 and unsmoothed PC time series (blue), N= 24, =τ 20 and unsmoothed PC time series (red). Also shown is the case for a LIM computed from a long run of the model without
data assimilation (black dashed).

Fig. C.3. The rms error in the predicted
amplitude of each EOF r for forecast lead
times of (a) 12 months, (b) 6 months, and
(c) 3 months for the case N = 14. In the case
of (a) and (b) the skill of using LIMs derived
from different time-lags are also shown. The
skill of persistence hindcasts are shown in
black. (d) The total forecast error variance
vs forecast lead time computed from

〈 〉ϵϵTr{ }T (circles) and −
∼ ∼t tΦ MΦ MTr{ ( ) ( ) }T

(dashed curve).
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The forecast errors are given by = −ϵ t t tu u( ) ( ) ( )f t where uf and ut are the forecast and true values of u respectively. If the u are consistent with
(B.5), then the forecast error covariance matrix is given by 〈 〉 = −

∼ ∼ϵ ϵt t t t t tΦ M Φ M( ) ( ) ( ) ( ) ( ) ( )T T (Penland, 1989). Fig. C.3d shows the total forecast
error variance (ı.e. the trace) computed from the left and right hand side of this expression as a function of the forecast interval. By and large the
actual LIM forecast error variance agrees well with that expected, although it is generally under estimated, while the discrepancy between the actual
and expected error variance is modest and increases with the forecast interval.

C.4. Decorrelation time of the stochastic forcing

According to (B.5), the PC time series u can be described as a stochastically forced linear system, where the stochastic forcing is white noise in
time. White noise will decorrelate over a time interval of one time step, which for the time series considered here is one month. The stochastic forcing
can be estimated by rearranging (B.5) so that = −ξ dt du Au͠  where A is the estimate of A based on∼M in (B.6), and u is the actual vector of PC time
series. Fig. C.4 shows the time-lagged auto-correlation versus lag time of the stochastic forcing for each component of u for the case =τ 12 months
and N = 14. In most cases the lag-1 correlation decreases rapidly, indicating that the assumption of white noise forcing in time is reasonable for this
system.

C.5. Stochastic forcing covariance

The covariance matrix of the stochastic forcing ξ in (B.1) obeys the Lyapunov equation:

+ + =t tAC C A Q( ) ( ) 0T (C.1)

where = 〈 〉ξξ dtQ T (Antoulas, 2005). Eq. (C.2) is also referred to as the fluctuation-dissipation relation by Penland and Sardeshmukh (1995) fol-
lowing Gardiner (1985). Using (B.6), the covariance matrix of the stochastic forcing can be estimated according to:

= − +
∼ t tQ AΦ Φ A( ( ) ( ) ).T  (C.2)

Another indicator of the veracity of the LIM is the eigenspectrum ∼Q which should be a positive-definite matrix. For example, for the test case
considered here with =τ 12 months and N = 14, ∼Q has two negative eigenvalues. The presence of negative eigenvalues does not negate the
hypotheses of the LIM, but rather is an indicator of the influence of various approximations and uncertainties, such as unreliable higher order EOFs,
or where (B.1) is only approximately valid (see Penland and Sardeshmukh, 1995 and Del Sole and Hou, 1999 for further discussion). When properties
of the stochastic forcing are sought using ∼Q, it is usual to disgard the eigenvectors of∼Q with negative eigenvalues. In the cases presented in Sections 4
and 5, we use =τ 6 months and N = 10 and the PC time series were detrended and smoothed in time using a 12-month running mean. In this case,
all of the eigenvalues of ∼Q are positive. Fig. C.5 shows the percentage variance explained by the eigenvectors (EOFs) of ∼Q computed from (C.2) and

Fig. C.4. Lagged auto-correlation functions of the stochastic forcing for each principal component versus lag for the case =τ 12 months, N = 14.

Fig. C.5. Percentage variance explained by the eigenvectors of Qe (solid line) and ∼Q (dashed line).
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Qe, the covariance matrix of the actual stochastic forcing computed from −du Au . The eigenspectra of ∼Q and Qe are clearly very similar, lending
further weight to the underlying hypotheses of (B.1). In addition, the leading EOFs of ∼Q and Qe are very similar (not shown), although

∼
∼Q QTr( ) 0.2 Tr( )e indicating that (C.2) tends to significantly over estimate the total variance of the stochastic forcing.
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