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a b s t r a c t

A 26-year record of depth integrated primary productivity (PP) in the Southern California Current System
(SCCS) is analyzed with the goal of improving satellite net primary productivity (PP) estimates. Modest
improvements in PP model performance are achieved by tuning existing algorithms for the SCCS,
particularly by parameterizing carbon fixation rate in the vertically generalized production model as a
function of surface chlorophyll concentration and distance from shore. Much larger improvements are
enabled by improving the accuracy of subsurface chlorophyll and light profiles. In a simple vertically
resolved production model for the SCCS (VRPM-SC), substitution of in situ surface data for remote sensing
estimates offers only marginal improvements in model r2 (from 0.54 to 0.56) and total log10 root mean
squared difference (from 0.22 to 0.21), while inclusion of in situ chlorophyll and light profiles improves
these metrics to 0.77 and 0.15, respectively. Autonomous underwater gliders, capable of measuring
subsurface properties on long-term, long-range deployments, significantly improve PP model fidelity in
the SCCS. We suggest their use (and that of other autonomous profilers such as Argo floats) in
conjunction with satellites as a way forward for large-scale improvements in PP estimation.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The satellite ocean color era began with the launch of the
Coastal Zone Color Scanner (CZCS) in 1978. Several years later,
with scientists using ocean color to estimate surface chlorophyll
(chl0), Eppley et al. (1985) examined relationships between chl0
and euphotic zone integrated primary production (PP) in anticipa-
tion of attempts to quantify PP from satellites. In that paper they
described variability in the ratio F¼PP/chl0 (see Table 1 for
variable definitions), and suggested the simplest of satellite
primary productivity algorithms (PPAs), where PP (g C m�2 d�1)
is approximated by the square root of chl0 (mg m�3). That model,
which we refer to as the Eppley Square Root model (ESQRT),
represents a baseline of both complexity and skill for PPAs.

In the subsequent decades, many PP models have been devel-
oped (see Saba et al., 2011 for 21 examples) in an effort to improve
satellite productivity estimates. In addition to satellite estimates
of surface chlorophyll (chl0), they typically rely on satellite-
derivable physical quantities such as sea surface temperature
(SST) and photosynthetically available radiation (PAR), either

directly or through the inclusion of physiological variables (e.g.
quantum yield, carbon fixation rate) that are estimated from
satellite-derived properties. A series of primary productivity algo-
rithm round-robin (PPARR) comparisons (Campbell et al., 2002;
Carr et al., 2006; Friedrichs et al., 2009; Saba et al., 2011)
periodically evaluates satellite algorithms of wide-ranging com-
plexity, from the ESQRT baseline to fully depth- and wavelength-
resolved algorithms, and has produced several key findings:
(i) model performance does not improve with model complexity,
(ii) no particular model consistently outperforms the others, (iii)
chl0 captures primary productivity variability better than any
other parameter, (iv) models typically underestimate observed
PP variability and may fail to capture broad scale regime shifts, and
(v) average model skill is significantly lower in coastal waters than
pelagic waters, partly due to increased uncertainty in satellite
chlorophyll estimates, and partly to limitations of the algorithms.

Though PPAs have been evaluated in some coastal systems (e.g.
Saba et al., 2011), none of the PPARR experiments include data
from the California Current System (CCS), nor do they include
other major upwelling ecosystems (Humboldt, Canary, Benguela).
Kahru et al. (2009) conducted a scaled-down PPARR-like compar-
ison, evaluating five PPAs in the SCCS, and found little difference
between the best performing algorithms. All were biased toward
high productivity, and none captured more than 66% of the observed
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data variance. An empirically adjusted model was produced by fitting
in situ data to remove the systematic bias, resulting in improved
model skill (Kahru et al., 2009).

In this paper we explore PP in the southern CCS (SCCS) with the
goal of informing improved satellite PPAs. First, we update the
Eppley et al. (1985) analysis of in situ productivity data in the SCCS.
Their study was based on �270 stations occupied from 1974 to
1983 within a region bounded approximately by Los Angeles and
San Diego to the north and south, respectively, and up to 100 km
offshore. We use over 25 years of PP data from the California
Cooperative Oceanic Fisheries Investigations (CalCOFI), including
over 1500 primary productivity casts from �100 quarterly cruises
since 1985, with spatial coverage throughout the southern Cali-
fornia Bight and up to 600 km offshore. Next, we evaluate several
existing PPAs for their performance against CalCOFI data and
explore possibilities for improving their performance in the CCS.
Finally, we provide suggestions for further improving PP estimates
with the aid of autonomous subsurface platforms.

2. Methods

2.1. In situ data

Since 1984, on-deck 14C incubations have been performed on
quarterly cruises as a part of the CalCOFI program. Reported half-
day (local noon to sunset) values, integrated over the euphotic
depth, are multiplied by 1.8 to obtain equivalent 24 h productivity
(Eppley, 1992). Station locations for the dataset used in this paper
are shown in Fig. 1, totaling 1544 PP casts from 1985 to 2011.
Additional parameters recorded on CalCOFI cruises and utilized
here include SST, chlorophyll, light attenuation at depth, and dis-
tance from shore.

2.2. Satellite data

Where available, satellite estimates of chl0, SST, and PAR have
been obtained for comparison with CalCOFI data. Chl0 was derived
by applying a recently developed empirical algorithm (Kahru et al.,
2012), based on over 10,000 in situ measurements from the CCS, to
SeaWiFS Level-3 remote sensing radiance. This algorithm produces
values very similar to those from the current standard OC4v6
algorithm for in situ chl0o1 mg m�3 but significantly higher
values for in situ chl041 mg m�3. PAR (mol quanta m�2 d�1)
was obtained from the standard SeaWiFS product (Frouin et al.,
2003) for 1997–1999 and merged from multiple sensors (SeaWiFS,
MODIS-Terra, MODIS-Aqua) for 2000–2010. For SST, we used the
daily AVHRR Pathfinder 5 dataset described by Casey et al. (2010),
and interpolated when measured SST values were missing. All
three datasets were daily composites with 9 km global mapping.
For each CalCOFI station, match-ups were sought for the nearest
satellite pixel on the same day. If those data were not available, the
search was continued forward and backward in time until the
nearest valid dataset was found. Satellite match-ups were avail-
able for 723 CalCOFI PP stations.

2.3. Glider data

Spray gliders (Sherman et al., 2001) deployed on CalCOFI lines
80 and 90 as a part of the Southern California Coastal Ocean
Observing System (SCCOOS) provided vertical fluorescence pro-
files. All available glider data were filtered to find profiles in
proximity to CalCOFI PP stations, subject to a range of spatial and
temporal constraints. For each station, a mean fluorescence profile
was obtained by averaging all glider profiles within the match-up
criteria. Fluorescence was converted to chlorophyll according to
Lavigne et al. (2012) assuming that euphotic zone depth exceeds
mixed layer depth, the predominant condition off the California
coast (Frolov et al., 2012b). The Lavigne et al. (2012) algorithm
uses measured surface chlorophyll to calibrate the fluorescence
profile, reducing uncertainty due to detector variability, drift on
long deployments, and fluctuations in the relationship between
fluorescence and chlorophyll. Nonetheless, we assume that there
is unquantified variability in the fluorescence data due to these
factors.

2.4. Satellite primary productivity algorithms

It is not our intention to replicate the PPARR comparisons
specifically for the CCS. Instead, we evaluate several well-known
models that we consider representative of the larger set of
available PPAs in both methodology and performance. Each of
the models tested includes physiological variables that may be
tuned for the CCS as a first step toward improving model-data
agreement.

The model described by Marra et al. (2003) (MARRA) is depth-
resolved, and uses inputs of chl0, SST, and PAR. It is based on
chlorophyll-specific absorption, which is parameterized by SST,
and maximum quantum yield, which is assumed constant for a
given region. The vertical chlorophyll profile is estimated from
surface concentration and is used along with non-photosynthetic
absorption coefficients to calculate light attenuation with depth.

The widely used vertically generalized production model
(VGPM) of Behrenfeld and Falkowski (1997) requires the same
three inputs as MARRA, and uses latitude and time of year to
calculate day length. It relates productivity to the optimal
chlorophyll-specific carbon production rate (PBOPT), which is esti-
mated by a seventh-order polynomial fit to SST. A number of
VGPM variants have been proposed with alternate methods of
estimating PBOPT, and we evaluate one proposed by Kameda and
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Fig. 1. Map of CalCOFI primary productivity survey coverage from late 1985 to early
2011. A total of 1544 PP casts make up the dataset. Circles indicate stations
occupied more frequently during the study period (minimum of five times in this
dataset, average of 22), while X’s indicate stations occupied fewer than five times,
typically only once or twice. Filled circles denote stations identified for match-ups
with Spray glider profiles.
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Ishizaka (2005) (VGPM-KI), which assumes the chlorophyll con-
centration is made up of a small, stable component and a large,
fluctuating component.

2.5. Statistics

To quantify model performance, we present a suite of statistical
measures that have been employed routinely in past PPA compar-
isons. They are the determination coefficient (r2), total root mean
square difference (RMSD), centered-pattern RMSD (RMSDcp),
and bias. All statistics are calculated on log-transformed data,
and the total RMSD summed over n data points is

RMSD¼ 1
n
∑
n

i ¼ 1
½ log ðPPMðiÞÞ� log ðPPIðiÞÞ�2

 !1=2

ð1Þ

where PPM and PPI denote modeled and in situ primary produc-
tivity (mg C m�2 d�1), respectively. RMSD is a measure of total
model skill, and captures a model’s ability to accurately represent
both the mean and the variability of in situ data. We therefore also

divide RMSD into two components

RMSD2 ¼ RMSDcp2þBias2 ð2Þ
where Bias is the difference between log-transformed model
and data means, and RMSDcp captures model-data differences in
variability.

To avoid evaluating new PPAs against the data with which they
were developed, we divide the CalCOFI-satellite match-ups into
one period for model development (1997–2004, n¼399) and
one for model validation (2005–2010, n¼324). Statistics for PPA
comparisons are calculated on the latter.

3. Results

3.1. Properties of the CalCOFI dataset

We begin with an examination of the full in situ primary pro-
ductivity dataset. Data are available year-round, with 72–254PP
casts available per month (mean is 154), except for June and
December, which had five casts and none, respectively, during our
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Fig. 2. Ratios of integrated PP to surface chlorophyll (F, left panels) and surface PP to surface chlorophyll (F0, right panels) plotted against four parameters: surface
chlorophyll, sea surface temperature, distance from shore, and time of year.
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26-year analysis window. Mean monthly PP over the entire
CalCOFI domain exhibits seasonal variability with lower values
from late fall to early spring (PP¼450–600 mg C m�2 d�1 from
September to March), higher values in the spring and late summer
(800–850 mg C m�2 d�1 for April, July, and August), and max-
imum productivity in May (�1400 mg C m�2 d�1) during peak
upwelling season.

As in Eppley et al. (1985), we examine properties of the ratio
F¼PP/chl0, a parameter of particular interest for remote sensing
applications. Correct representation of F is the necessary link
between satellite estimates of chl0 and accurate PP estimates from
depth-integrated PPAs. An analogous ratio for surface primary
productivity (pp0), F0¼pp0/chl0, may be of greater interest for
depth-resolved PPAs that aim to relate PP and chlorophyll at
discrete depths. Unlike F, F0 is not impacted by the subsurface
distribution of productivity.

When viewed against environmental variables, qualitative
differences between F and F0 are readily apparent (Fig. 2). F is
negatively correlated with chl0 and weakly positively correlated
with SST. In contrast, F0 is uncorrelated to chl0, and has even
weaker temperature dependence. One explanation for this dis-
crepancy is the relationship of surface chlorophyll to the vertical
chlorophyll profile. As reported previously off central California
(Frolov et al., 2012b), the relationship between chl0 and depth-
integrated chlorophyll is piecewise linear, with distinct slopes
above and below chl0ffi1 mg m�3. However, low chl0 is associated
with a deep chlorophyll max while high chl0 is characteristic of
surface-intensified phytoplankton blooms. Productivity is distrib-
uted to greater depths in the case of low chl0, resulting in generally
high values of F with large scatter, while the opposite is true
for high chl0. This paradigm indicates that the decrease of F with
increasing chl0 is a proxy for changes in the vertical distribution of
phytoplankton, not a physiological effect, and explains why a
similar pattern is not seen in F0. The same explanation can be
invoked for the increasing trend of F toward higher temperatures,
since cold, upwelled waters near shore in the CCS are asso-
ciated with higher chl0. It should be noted, however, that
increased growth rates at higher temperatures are expected out-
side of upwelling systems as well (Eppley, 1972; Behrenfeld
and Falkowski, 1997), and we do see weak temperature depen-
dence in F0.

Though noisy, opposite trends are visible in F and F0 when
viewed as functions of distance from shore. F is on average higher
farther from shore, in line with a trend toward low chl0 and deep
chlorophyll maxima offshore. F0 decreases with distance from
shore, and the mean offshore value is approximately half that

near the coast. In contrast to the trend in F, this result is likely a
physiological response driven by a combination of nutrient avail-
ability and phytoplankton community composition. Seasonal
variability is present in both F and F0, though more strongly for
F0, with a minimum in winter, increase in the spring, and peak in
late summer/fall. Attributing seasonality in these ratios to a
specific cause is difficult, as time of year is a proxy for day length
and generally for PAR as well, but may also reflect changes in
community structure, specifically the relative abundance of dia-
toms and dinoflagellates.

3.2. Performance of existing PPAs

Model statistics for common PPAs (ESQRT, MARRA, VGPM,
VGPM-KI) are given in Table 2 for both in situ and satellite chl0
and SST inputs. Differences between the in situ and remote sensing
statistics can be attributed to inaccuracies in satellite chlorophyll
estimates, as differences in model performance using in situ
rather than remotely sensed SST are negligible. The models are
less sensitive to SST than chl0, and in situ-satellite correlations are
better for SST than for chl0 (r2¼0.81 and 0.59, respectively).
Satellite PAR is used in all cases, as surface PAR is not reliably
available on CalCOFI cruises.

Outside of the simplistic ESQRT model, none of the PPAs tested
here is clearly superior to the others. All are biased high and
capture just less than 60% of the total log10 data variance. MARRA
and VGPM-KI have comparable RMSD, though MARRA represents
the mean slightly better and the variability slightly worse than
VGPM-KI. VGPM is even more biased than the others but has the
lowest RMSDcp and ties for the best r2, making it the ideal
candidate for a purely empirical adjustment of model output
(Kahru et al., 2009). VGPM-KI is most sensitive to inaccuracies

Table 1
Notation for environmental and physiological variables.

PBz Carbon fixation rate at depth z (mg C (mg chl)�1 h�1)
PBOPT Maximum carbon fixation rate within a water column (mg C (mg chl)�1 h�1)
PBOPT,VGPM PBOPT calculated according to Behrenfeld and Falkowski (1997) (mg C (mg chl)�1 h�1)
PBOPT,CALC PBOPT calculated from in situ PP, according to Eq. (3) (mg C (mg chl)�1 h�1)
PP Depth integrated primary productivity (mg C m�2 d�1)
PPI In situ measured PP (mg C m�2 d�1)
PPM Model estimated PP (mg C m�2 d�1)
ppz Primary productivity at depth z (mg C m�3 d�1)
pp0 Primary productivity at depth nearest the surface (mg C m�3 d�1)
chlz Chlorophyll concentration at depth z (mg chl m�3)
chl0 Chlorophyll concentration at depth nearest the surface (mg chl m�3)
dirr Day length (h)
PAR Photosynthetically available radiation (mol quanta m�2 d�1)
PARz PAR at depth z (mol quanta m�2 d�1)
F chl0-specific PP (mg C m (mg chl)�1 d�1)
F0 chl0-specific pp0 (mg C (mg chl)�1 d�1)
zeu Euphotic zone depth (m)
kz Optical attenuation coefficient for PAR at depth z (m�1)

Table 2
Model statistics for CalCOFI stations with satellite match-ups, 2005–2010 (n¼324).
Statistics are shown for NPP estimates using in situ chl0 and SST (left) and for
estimates from remote sensing data (right). In both cases, PAR is from satellite.

Model In situ Satellite

r2 RMSD RMSDcp Bias r2 RMSD RMSDcp Bias

ESQRT 0.488 0.246 0.223 0.105 0.475 0.248 0.224 0.106
MARRA 0.586 0.245 0.232 0.080 0.561 0.249 0.235 0.083
VGPM 0.586 0.289 0.205 0.204 0.555 0.296 0.212 0.207
VGPM-KI 0.566 0.238 0.207 0.118 0.514 0.247 0.217 0.119
VGPM-SC 0.620 0.193 0.193 0.013 0.585 0.202 0.201 0.013
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in chl0, incurring the most significantly reduced determination
coefficient when satellite chl0 is used in place of in situ data.

VGPM and MARRA exhibit seasonally dependent performance
when evaluated within winter (December–February), spring
(March–May), summer (June–August), and fall (September–Octo-
ber) periods (Table 3). While both models are biased high year-
round, they are more so in the winter/spring, and less in the
summer/fall. Neither model appears to fully capture the seasonal
variability in chlorophyll-specific phytoplankton growth evident in
Fig. 2. Consequently, model bias is highest when chlorophyll-
specific productivity is relatively low. Coefficients of determination
range widely among seasons, with values highest values in spring
(�0.75) and lowest in fall (�0.47). However, RMSD and RMSDcp
do not follow the same pattern, and r2 values are likely high in the
spring largely due to it being the season of greatest PP variance.

3.3. Empirical adjustment of PPAs

The simplest method of improving an existing PPA is an empi-
rical adjustment of the model output to match in situ data (Kahru
et al., 2009). The adjustment has no ecological basis, but improves
performance. A next step is to improve the model’s parameteriza-
tions of physiological variables, for example the quantum yield and
chlorophyll-specific absorption terms in MARRA or the optimal
carbon fixation rate term (PBOPT) in VGPM. The latter has been done
before, with the original seventh-order fit to SST replaced by alter-
nate functions of SST, chl0, or a combination of the two (Friedrichs
et al., 2009). Here, we rearranged the original VGPM algorithm
(Eq. (10) of Behrenfeld and Falkowski, 1997) and used measured PP
and chl0 to calculate PBOPT values that give perfect model-data
agreement for each data point:

PB
OPT ;CALC ¼

PP
0:66125U ðPAR=PARþ4:1ÞUzeu Uchl0 Udirr

ð3Þ

We estimated euphotic zone depth (zeu) from chl0 (Morel and
Berthon, 1989) and day length (dirr) from latitude and time of year
(Forsythe et al., 1995). We then searched for correlations of PBOPT,
CALC with environmental variables including chl0, SST, PAR, lati-
tude, and distance from shore. As in Eppley et al. (1985), SST did
not offer significant improvement of the parameterization. PAR is
strongly correlated with the already included dirr, and offered
no additional gains. We also found no significant relationship
between PBOPT,CALC and latitude. A clear relationship with chl0 does
exist, as expected from the upper left panel of Fig. 2, and we find
that for a given chl0, PBOPT,CALC is higher closer to shore, likely due to
increased nutrient availability and a different phytoplankton
community composition. Fig. 3 illustrates this relationship, the
basis for a southern California-specific VGPM variant (VGPM-SC).
All CalCOFI PP casts from 1997 to 2004 were divided into three
regimes based on their distance from the coast – near shore
(o50 km), transition (50–250 km), and offshore (4250 km),
and PBOPT,CALC was fit as a power law function of chl0 within each

cross-shore region. When tested in the 2005–2010 period, VGPM-SC
improves all model statistics relative to the original VGPM and other
models tested here (Table 2).

3.4. Vertically resolved production model

Given the availability of vertically resolved in situ primary
productivity measurements from the CalCOFI dataset, model-
data productivity comparisons are possible at discrete depths as
well for the euphotic zone integrated value. We take advantage of
that resource here to examine the potential for the development of
a vertically resolved production model for the SCCS (VRPM-SC).
Again, we start with the depth integrated VGPM, which performed
well when initially developed in a vertically resolved form
(Behrenfeld and Falkowski, 1997). We discard factors related to
vertical generalization of the productivity profile to obtain a

Table 3
Seasonal performance of VGPM and MARRA models, run with in situ chl0 and SST.
Unlike in Table 2, the full set of CalCOFI-satellite match-ups (1997–2010) was used
to calculate statistics.

Season VGPM MARRA

r2 RMSD RMSDcp Bias r2 RMSD RMSDcp Bias

Winter 0.530 0.312 0.188 0.249 0.532 0.258 0.230 0.118
Spring 0.760 0.293 0.197 0.217 0.744 0.247 0.219 0.114
Summer 0.675 0.271 0.200 0.182 0.710 0.205 0.203 0.027
Fall 0.472 0.263 0.202 0.168 0.473 0.231 0.225 0.051
All 0.645 0.285 0.200 0.203 0.639 0.236 0.223 0.076
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simple expression for depth-dependent productivity (ppz)

ppz ¼ PB
z Uchlz Udirr ð4Þ

where PBz and chlz are the carbon fixation rate and chlorophyll
concentration, respectively, at depth z. PAR is assumed to be the
next most important factor influencing depth-dependent produc-
tivity, as we expect photoinhibition at high light levels and light
limitation at depth. Though PAR profiles are not consistently
available for CalCOFI data, productivity measurements are accom-
panied by reported light levels, expressed as a percentage of the
surface value. To estimate the vertical PAR profile, CalCOFI in situ
light percentages are multiplied by the SeaWiFS/MODIS remote
sensing surface PAR.

Fig. 4 shows the dependence of PBz on PAR at discrete
depths (PARz), most significantly the light limitation below
�10 mol quanta m�2 d�1. At higher light levels, PBz is noisy and
ranges from 0 to 5 mg C mg chl�1 h�1. Photoinhibition is difficult
to discern for the full dataset, though maximum PBz values for
individual profiles occur between 0 and 1.5 optical depths,
consistent with previous analysis (Behrenfeld and Falkowski,
1997). We fit PBz to capture decreased carbon fixation rates at
low light levels and the mean rate at higher light levels, resulting
in the final form of VRPM-SC:

ppz ¼ 2:9Uchlz Udirr U
PARz

PARzþ2:6
ð5Þ

while further parameterization of PBz could be attempted with the
use of SST, latitude, or distance from shore, we focus on the impact
of the vertical chlorophyll and PAR profiles, as outlined in the next
section.

3.5. Importance of chlorophyll and light profiles

The value of providing in situ chlorophyll and light profiles to
PPAs is illustrated by incrementally improving the quality of input

data to VRPM-SC. The base level of performance is that achieved
with solely remote sensing inputs (Fig. 5a). The vertical chloro-
phyll profile is estimated from chl0 according to Woźniak et al.
(2003) and light attenuation at depth is calculated from an
empirically derived, chlorophyll dependent extinction coefficient,
kz (Parsons et al., 1984)

kz ¼ 0:04þ0:0088chlzþ0:054chl0:67z ð6Þ

while it is possible from the CalCOFI data to develop an ad hoc
chlz–kz relation for the SCCS, we find that correlation between the
two is weak and tuning Eq. (6) offers negligible improvement in
resultant model performance. By all metrics, VRPM-SC perfor-
mance with only satellite data input is slightly worse than that of
VGPM-SC, but comparable to previously established PPAs (Fig. 5a
and Table 2). This outcome is not surprising as those models
include just one additional variable, SST, which does not signifi-
cantly improve model performance in the SCCS (Eppley et al., 1985,
this study).

Model performance with CalCOFI chl0 substituted in place of
SeaWiFS estimates represents the best performance achievable as
satellite chlorophyll estimates improve, converging on perfect
agreement with in situ data. However, comparison of statistics in
Table 2 indicates that uncertainty in satellite data is a relatively
small contributor to model error, and the same holds true for
VRPM-SC (Fig. 5b). With in situ chl0 replacing satellite data, total
log10 RMSD and RMSDcp are reduced by just 2–3%, while r2

improves marginally from 0.537 to 0.564. Additional performance
gains may be possible with improved satellite PAR estimates,
though they are likely to be small particularly for VGPM variants,
which are inherently insensitive to PAR except at very low light
levels.

In contrast to the relatively small error induced by uncertainty
in chl0, accurate representation of the subsurface chlorophyll
profile improves model performance significantly (Fig. 5c). RMSD
drops from 0.215 for PP estimates based on satellite chl0 to 0.177
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Fig. 5. Dependence of VRPM-SC performance on available input data for all 2005–2010 CalCOFI-satellite match-ups. In all cases, surface PAR comes from satellite. Additional
inputs are (a) satellite chlorophyll and SST, (b) in situ surface chlorophyll and SST, (c) in situ chlorophyll profile, (d) in situ chlorophyll and light profiles. Dashed lines indicate
uncertainty bounds for in situ primary productivity measurement, estimated according to Saba et al. (2011).
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with known chlorophyll profiles – an improvement six times
larger than that obtained by substituting in situ chl0 for satellite
data. RMSDcp and r2 also improve dramatically, to 0.175 and 0.685
respectively, while bias remains small.

Finally, we explore model performance as influenced by uncer-
tainty in the vertical light profile. CalCOFI reports light levels
coincident with PP measurements as percentages of the surface
value. We combine these subsurface light percentages with
satellite surface PAR to obtain in situ PAR profiles. With in situ
PAR profiles substituted for the empirical estimate of Eq. (6),
VRPM-SC performance experiences yet another jump compar-
able to that achieved through inclusion of the chlorophyll
profile (Fig. 5d). As PB is relatively insensitive to PAR above
�10 mol quanta m�2 d�1, model improvements must be forced
primarily by capturing light limitation at depth. RMSD and
RMSDcp drop to 0.150, bias is negligible, and r2 improves to
0.771. Accurate representation of chlorophyll and light profiles
together represent a potential improvement in total model skill
(RMSD) an order of magnitude greater than that possible from
improved satellite chlorophyll estimates (Fig. 5). Furthermore,
much of the discrepancy between in situ and VRPM-SC PP
estimates lies within the uncertainty of the in situ measurements.
Saba et al. (2011) assumed uncertainties decreasing as a linear
function of log(PP), from 50% for PPr50 mg C m�2 d�1 to 20% for
PPZ2000 mg C m�2 d�1. In the best-case scenario, given these
uncertainties, model statistics for VRPM-SC (Fig. 5d) improve to
r2¼0.943 and RMSD¼0.070.

The performance of satellite PPAs, relying solely on observable
surface properties, is regulated by the relationship between chl0
and PP, captured by the ESQRT model. More complex formulations
employing additional parameters (SST, PAR) offer only modest
improvements in the SCCS (Kahru et al., 2009). In fact, when
model performance is assessed individually for quarterly CalCOFI
cruises, VGPM captures no more variance than that associated
with chl0 (Fig. 6). Extending the model-data evaluation over a year
or more results in improved r2 for VGPM due to the inclusion of
day length, which captures seasonal variability in chlorophyll-
specific productivity. VRPM-SC, on the other hand, is weakly
influenced by the chl0–PP relationship, and model performance
is excellent on nearly all cruises (r240.8 for 42 of 52 cruises, as
compared to 12 of 52 for VGPM). While efforts to improve VGPM
typically focus on tuning PBOPT, we find no correlation between
model performance and the accuracy of PBOPT prediction (Fig. 6).
Accordingly, we turn our attention to improving our knowledge of
vertical profiles.

3.6. Potential for improving chlorophyll profiles

The potential of vertically resolved PPAs to improve productiv-
ity estimates, detailed above, is evident. However, these models
suffer from one clear limitation: the scarcity of in situ vertical
chlorophyll and PAR profiles. As a result, in large scale compar-
isons they demonstrate no clear performance edge over vertically
integrated models (Friedrichs et al., 2009; Saba et al., 2011).
Chlorophyll at depth is typically estimated from the surface value
based on empirical relationships (Marra et al., 2003; Woźniak
et al., 2003; Ostrowska et al., 2007), which assume that a deep
chlorophyll maximum accompanies low chl0 and high surface
chlorophyll is associated with a relatively uniform vertical dis-
tribution in the surface mixed layer. While qualitative structural
agreement with in situ data is good, any discrepancies in the
position or concentration of subsurface chlorophyll features influ-
ence PP estimates significantly.

In situ vertical chlorophyll profiles are sparse, though they are
becoming more widely available thanks to vertical profiling floats
and underwater gliders. The latter are capable of autonomous,
long-range operation for several months while carrying a variety
of oceanographic instruments including CTD sensors (conductivity,
temperature, depth) and fluorometers. We explore here the
potential of using glider data to improve PP estimates from a
vertically resolved production model.

Application of glider data to PP estimates was initially con-
strained to glider profiles with available satellite match-ups and
within 10 km and 10 days of CalCOFI sampling, similar to decorr-
elation scales reported for the SCCS (4–8 km and �17 days, Frolov
et al., 2012a). A total of 38 CalCOFI PP stations had corresponding
glider profiles within the 10 km/10 day window; locations for
successful match-ups are shown in Fig. 1. For this small sample
we find that inclusion of glider chlorophyll profiles in VRPM-SC, in
comparison to chl0 alone, improves model performance. RMSD
drops from 0.200 to 0.188 and r2 increases from 0.521 to 0.585
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Fig. 6. Impact of individual model components on PPA performance. On the horizontal axes are r2 values for (left) surface chlorophyll correlation with PP, calculated on log-
transformed data, and (right) PBOPT, with the VGPM predicted value compared to the calculated value that would give perfect model-data agreement. In each panel, the
vertical axis shows model performance as indicated by r2 between modeled and measured PP. The model-data comparisons are calculated on each quarterly cruise for VGPM
(solid dots) and VRPM-SC (X’s), and on each year (1997–2010) for VGPM (open circles).

Table 4
VRPM-SC statistics for CalCOFI stations with glider and satellite match-ups within
10 days and 10 km (n¼38).

Chlorophyll data PAR Data r2 RMSD RMSDcp Bias

CalCOFI surface SeaWiFS/MODIS 0.521 0.200 0.199 0.016
Glider profile SeaWiFS/MODIS 0.585 0.188 0.186 0.027
CalCOFI profile SeaWiFS/MODIS 0.586 0.182 0.182 0.017
CalCOFI profile CalCOFI profile 0.735 0.142 0.141 �0.015
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(Table 4). This is a substantial portion of the gain realized when
chlorophyll is known at the exact location and depth of the
productivity data, indicating the high quality of glider match-ups
within the 10 km/10 day window (Fig. 7). As match-up constraints
are relaxed, the power of gliders to effect positive change in model
performance is reduced, though a modest improvement is seen
even at time and space scales significantly longer than 10 days and
10 km. Although these gliders did not include light profiles,
commercially available PAR sensors are routinely deployed on
gliders and profiling floats; addition of that data would further
improve the PP estimates.

4. Discussion

4.1. Limitations of satellite NPP algorithms

We examined properties of a 26-year primary productivity
record, composed of over 1500 stations throughout the SCCS. The
ratio of integrated primary productivity to surface chlorophyll, a
value of key significance for nearly all satellite PPAs (Lee et al.,
1996 is one exception), correlated strongly to chl0. The ratio of

surface productivity to surface chlorophyll did not, however,
indicating that the former is a proxy for variability in the vertical
structure of productivity, not in phytoplankton physiology. The
same appeared to be true for correlations with other variables,
often used in PPAs to parameterize the relationship between chl0
and PP. These models seem to rely heavily on surface variables to
implicitly represent subsurface features, and inherent limitations
in that process may explain why we found similarly restricted
model performance for a range of PPAs (MARRA, VGPM, and
VGPM-KI). Increased model skill was obtained using a VGPM
variant relating PBOPT to chl0 and distance from shore (Fig. 3), with
higher chlorophyll-specific productivity near shore presumably
due to nutrient availability and phytoplankton community struc-
ture. The new model (VGPM-SC) improved model-data r2 by about
6% over the best-performing existing PPAs, and a larger reduction
of total RMSD (19%) was due mostly to elimination of a systematic
model-data offset. While VGPM-SC is a useful tool for the SCCS,
and a similar approach may be valuable in other eastern boundary
current systems, it is worth noting that the use of distance from
shore in NPP models is less than ideal. For example, upwelled
water that separates from the coast at Pt. Conception may be
offshore in terms of position but biologically more representative
of coastal water. Also, static variables such as distance from shore
have no ability to capture change in the system over time.

Regardless of the method used to relate chl0 to PP, satellite PPAs
are inherently limited by their ignorance of vertical structure in
the water column. Most of their power for PP estimation comes
from the correlation of chl0 to PP. This was noted at the outset of
the satellite PP era by Eppley et al. (1985), whose observations
produced the elegant but clearly limited ESQRT model, in which PP
is a function of chl0 alone. Several decades later, numerous models
of varying complexity and regional specificity are available. How-
ever in the round robin comparison of Friedrichs et al. (2009), with
30 participating satellite and biogeochemical models, ESQRT was
best in total model skill (RMSD) by just one. Saba et al. (2011)
found ESQRT to be among the best performing models in 5 of 10
regions across the globe. In our SCCS analysis, we find that VGPM
performance is driven almost entirely by the correlation of PP and
chl0, and accurate prediction of PBOPT, the model’s key physiological
parameter, provides no clear improvement to PP estimates (Fig. 6).
It makes sense then that model fidelity would be enhanced more
by accurate representation of the vertical structure than by further
refinement of surface-based calculations.

4.2. Subsurface data for NPP estimates

We used a very simple vertically resolved production model
(VRPM-SC) to explore the utility of in situ subsurface measure-
ments, and found that even without capturing any physiological
variability (i.e. assuming PBz is constant unless light limited),
substantially improved PP estimates are achieved by including
in situ chlorophyll and light profiles (Fig. 5). Relative to model
statistics with only satellite data available, chlorophyll and light
profiles enable a 44% increase in model r2 (from 0.537 to 0.771)
and a 30% reduction in total RMSD (from 0.215 to 0.150). In
contrast, the evolution of satellite PPAs over several decades has
produced an 18% increase in r2 (from 0.475 for ESQRT to 0.561 for
MARRA) and negligible improvement in total RMSD (from 0.248
for ESQRT to 0.247 for VGPM-KI). Friedrichs et al. (2009) suggested
that with continued model improvement, satellite PPA perfor-
mance might soon fall within the uncertainty of in situ measure-
ments (RMSD¼0.070). Reaching that metric in the SCCS by
satellite alone appears to be far away if possible at all, based on
past progress. The addition of in situ profiles with VRPM-SC
immediately provides a large step forward, and we suggest that
it is presently the best way to improve remote PP estimates.

Fig. 7. Efficacy of incorporating glider chlorophyll profiles to improve PP estimates
as a function of distance and time between glider and PP estimates. (Top) Match-
ups were constrained within 10 days, while distance between CalCOFI and glider
data increased in 10 km increments. The numbers of match-ups in each bin were
38, 45, 55, 57, and 58, from closest to farthest. (Bottom) Match-ups were
constrained within 10 km, while increasing temporal disparities were considered.
The numbers of match-ups in each bin, from shortest time to longest, were 38, 61,
56, 55, and 58. In each case, model improvements were measured relative to the
case where only chl0 was known, with vertical structure based on empirical
relationships. The y-axis represents improvement in VRPM-SC performance
achieved with glider chlorophyll profiles relative to improvement achieved with
CalCOFI chlorophyll profiles (i.e. |Row2–Row1|/|Row3–Row1| in Table 4). Note that
much more improvement is possible with the addition of known PAR profiles.
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Of course, the inherent obstacle in realizing potential gains
described in Fig. 5 is the provision of subsurface data. Autonomous
technologies, including AUVs, profiling floats, and underwater
gliders, are platforms that today are capable of that task. Gliders,
first envisioned by Henry Stommel (1989), have achieved wide-
spread use in long-range, months-long deployments. In 2012
alone, Scripps Institution of Oceanography used Spray gliders to
collect over 10 glider-years of data including over 23,000 dives to
depths of up to 1000 m. Two gliders continuously trace CalCOFI
lines 80 and 90 (yielding over 6000 dives in 2012), and we
searched for the glider profiles nearest CalCOFI PP casts. For 38
stations, CalCOFI and Spray data were found within 10 days and
10 km of each other. Improvements in VRPM-SC performance
enabled by glider data were nearly equal to those attained using
CalCOFI chlorophyll measured coincident with primary productiv-
ity (Table 4 and Fig. 7). In this study, glider fluorescence was
converted to chlorophyll by the algorithm of Lavigne et al. (2012),
which implicitly accounts for several sources of uncertainty in
chlorophyll estimation from gliders. Alternatively (or in addition),
uncertainty in glider-based measurements due to instrument
drift (Cetinić et al., 2009) and daytime fluorescence quenching
(Sackmann et al., 2008) may be reduced by pre- and post-
deployment calibrations, anti-fouling strategies, and use of night-
time measurements to avoid quenching effects.

Fig. 7 illustrates the spatial and temporal extent of improve-
ments in PP estimation around glider profiles. The improvement in
model performance enabled by glider fluorescence data, as a
percentage of the increase with a known chlorophyll profile at
the exact place and time of PP estimation, decreases as the
distance between glider and PP estimation increases, especially
beyond 20 km. However, even at separation distances up to 50 km,
model performance is improved by glider fluorescence profiles.
Time lag between glider data and PP estimation also limits
performance gains, with a fairly consistent decline as separation
increases. Beyond 40 days, inclusion of glider profiles actually
resulted in worse model performance than an empirical estima-
tion of the profile. For comparison, spatial and temporal decorr-
elation scales reported for surface chlorophyll in the SCCS are
4–8 km and �17 days, respectively (Frolov et al., 2012a). In all
cases, the gliders available for these comparisons were not
equipped with PAR sensors, which appear to represent substantial
potential improvement beyond that provided by fluorometers
alone (Table 4). Though we were unable to assess the efficacy of
glider-based PAR sensors, which must contend with operational
issues such as self-shading and hull reflection, their use is not
unprecedented (e.g. Rudnick et al., 2004).

Another useful platform is the autonomous profiling float, as in
the global Argo program. Approximately 3000 Argo floats are
deployed at any time, covering the ocean at �31 resolution and
performing vertical profiles of the ocean’s upper 2000 m at 10-day
frequency. While the core Argo measurements are temperature,
salinity, and position, small numbers of “Bio-Argo” floats have
been deployed with optical sensors for downward irradiance and
chlorophyll-a fluorescence (Xing et al., 2011). Addition of fluorom-
eters and PAR sensors to a greater portion of the Argo fleet
could supplement and ground-truth satellite PP models, improv-
ing global productivity estimates.

4.3. Uncertainty in the CalCOFI PP data

As described in recent PPA round robin comparisons (Friedrichs
et al., 2009; Saba et al., 2011), observational uncertainty in PP
measurements is a considerable contributor to model-data dis-
crepancies. The CalCOFI dataset is not different, and Munro et al.
(2013) suggest that CalCOFI PP measurements are consistently
biased low, likely due to DO14C excretion and limitations of

simulated on-deck incubations. It is likely that in situ data
uncertainty is to blame for at least part of the substantial positive
bias reported for PPAs in this study (Table 2). Friedrichs et al.
(2009) found that the models with greatest skill were generally
those with lowest bias, indicating that biased PP observations may
significantly affect the outcome of a model comparison. Similarly,
empirically tuned models such as VGPM-SC and VRPM-SC inher-
ently carry the biases of the data used to develop them.

However, the CalCOFI record is consistent over 25þ years, any
underestimation of productivity does not appear to be related to
the magnitude of productivity (Munro et al., 2013), and there is no
indication that the variance is incorrect. Improvements in model
performance may therefore be more accurately assessed with the
centered-pattern RMSD (RMSDcp) and r2, which are independent
of bias, than with total RMSD. In either case, the key findings of
this study are unchanged: for the SCCS, satellite PPAs have
improved little over recent decades (Table 2) and vertical profiles
hold substantial value for improving model performance (Fig. 5).

4.4. Considerations for further study

While the analysis here demonstrates the feasibility of glider-
or float-aided PP estimates in the SCCS, it is restricted to locations
of synchronized glider and shipboard sampling. Expansion of
coordinated profiler and shipboard sampling programs to addi-
tional physically and biologically distinct regions would further
inform the true potential and limitations of autonomous vertical
profilers for improving our understanding of PP. Similarly, deter-
mination of the optimal method to combine high vertical resolu-
tion in situ data with synoptic satellite surface coverage is beyond
the scope of this study. Efforts of this nature have been carried
out to improve the quality of subsurface chlorophyll estimation
(Boss et al., 2008; Lavigne et al., 2012), and a similar effort for
productivity is likely to be valuable.

The CCS, like other eastern boundary current systems, is an
extremely dynamic environment, with spatially and temporally
variable phytoplankton populations. Vertical chlorophyll structure
at any time may reflect surface-dominated diatom blooms, verti-
cally migrating dinoflagellates, low-light cyanobacteria, and a host
of other communities. Vertically migrating species represent a
particular challenge for satellites, and fundamental alteration of
the PP to chl0 ratio through changes in vertical phytoplankton
distribution may accompany shifts in community structure (e.g.
the 2004–2006 “age of dinoflagellates” in Monterey Bay, Jester
et al., 2009). Moreover, empirical algorithms for estimating chlor-
ophyll at depth have no chance of capturing unexpected subsur-
face chlorophyll due to subduction of upwelled waters, a pervasive
feature of the CCS that may impact a substantial portion of
upwelling-derived productivity (Washburn et al., 1991; Barth
et al., 2002). Similarly, estimation of subsurface PAR is particularly
difficult in an optically complex (case 2) environment, where light
attenuation is significantly influenced by constituents that do not
co-vary with chlorophyll. In the open ocean, reduced optical
complexity enables better modeling of PAR absorption, and good
success has been found estimating chlorophyll profiles from sur-
face measurements (e.g. Morel and Berthon, 1989). It may there-
fore be expected that vertical profiles are less important in these
regions and PP models are capable of performing relatively well
with satellite data alone. However, oligotrophic regions are nota-
bly problematic for satellite PPAs, and particularly for depth
resolved PPAs (Friedrichs et al. 2009), so a study similar to ours
in an open ocean environment would be a valuable one.

Finally, evenwith complete knowledge of subsurface chlorophyll
and light profiles, our ability to determine net primary productivity
ultimately depends on understanding the factors governing phyto-
plankton growth, respiration, and mortality. Fortunately, the suite
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of satellite PPAs already available, through their functional forms
and parameterizations, encompass an enormous body of knowledge
surrounding those processes. Reducing uncertainty in subsurface
chlorophyll and PAR simply enables a focus on representing
those physiological effects, rather than finding proxies for vertical
structure.
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