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Building a multi-decadal time series of large-scale estimates of net primary production (NPP) requires merging
data from multiple ocean color satellites. The primary product of ocean color sensors is spectral remote sensing
reflectance (Rrs).We found significant differences (13–18%median absolute percent error) between Rrs estimates
at 443 nm of different satellite sensors. These differences in Rrs are transferred to inherent optical properties and
further on to estimates of NPP. We estimated NPP for the California Current region from three ocean color sensors
(SeaWiFS, MODIS-Aqua and MERIS) using a regionally optimized absorption based primary production model
(Aph-PP) of Lee et al. (2011). Optimization of the Aph-PP model was required for each individual satellite sensor
in order to make NPP estimates from different sensors compatible with each other. While the concept of Aph-PP
has advantages over traditional chlorophyll-based NPP models, in practical application even the optimized Aph-
PP model explained less than 60% of the total variance in NPP which is similar to other NPP algorithms. Uncer-
tainties in satellite Rrs estimates aswell as uncertainties in parameters representing phytoplankton depth distribu-
tion and physiology are likely to be limiting our current capability to accurately estimate NPP from space.
Introducing a generic vertical profile for phytoplankton improved slightly the skill of the Aph-PP model.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

Oceanic primary production and phytoplankton biomass (often rep-
resented by chlorophyll-a concentration), estimated by satellite ocean
color sensors have become important datasets to validate global earth
systemmodels (Gregg et al., 2003; Yoder et al., 2011). In fact, estimation
of oceanic net primary production (NPP) is considered one of the prin-
cipal applications of satellite ocean color measurements (McClain,
2009). While the first attempts to use satellite ocean color to estimate
oceanic NPP (Eppley et al., 1985) were promising, subsequent progress
has been modest. Algorithm testing and comparison campaigns
(Campbell et al., 2002; Carr et al., 2006; Friedrichs et al., 2009; Saba
et al., 2011) have shown clear limitations of current NPP models. In
particular, most of the variability in modeled NPP estimates is directly
related to the variability in surface chlorophyll-a concentrationwhereas
including other variables adds little to the skill of the models. It appears
that model performance is not directly related with model complexity.
1 858 822 0562.
Models underestimate observed NPP variability and fail to capture
changes in productivity due to shifts in phytoplankton community com-
position (Friedrichs et al., 2009).

The primary input to most ocean primary productivity models
(Behrenfeld and Falkowski, 1997) has been the concentration of
chlorophyll-a (mg m−3, Chla). However, operational satellite Chla
algorithms (O'Reilly et al., 1998, 2000) are based on the ratio of remote
sensing reflectance (Rrs) at blue and green wavelengths and primarily
represent changes in the total absorption at blue wavelengths. Total
absorption of blue light is affected not just by chlorophyll and other
phytoplankton pigments but also by colored dissolved organic matter
(CDOM)andnon-phytoplankton particulates (Siegel et al., 2005). Errors
in estimating Chla are directly transferred to errors in estimated NPP —

not just due to the biased phytoplankton biomass but also due to the
wide variation of biomass-normalized growth rate (Behrenfeld and
Falkowski, 1997). Lee et al. (1996, 2011) proposed primary production
algorithms that use phytoplankton absorption, aph(λ), instead of Chla
as the primary input variable. At least in principle, those algorithms,
based on inherent optical properties (IOPs), have some advantages
over NPP algorithms using Chla. First, when using aph(λ) estimated
with an inversion model from Rrs(λ) instead of a band-ratio derived
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Chla, the influence of absorption by CDOM is minimized. Second, the
uncertainty associated with Chla-specific absorption coefficient is
avoided. The absorption-based productivity algorithm (Aph-PP) pro-
posed by Lee et al. (2011) separates variables determined by phyto-
plankton physiology (e.g. the photosynthetic quantum yield) from the
variables primarily determined by optics (e.g. IOPs). In a case study
using a limited in situ dataset from the Southern Ocean, Lee et al.
(2011) showed that the Aph-PP algorithm improved the estimates of
NPP compared to traditional Chla-based methods. Here we apply the
Lee et al (2011) Aph-PP method to satellite data from three ocean color
sensors (SeaWiFS, MODIS-Aqua, MERIS) and evaluate its performance
compared to a large in situ dataset collected by the California Coopera-
tive Oceanic Fisheries Investigations (CalCOFI) and the closely related
California Coastal Ecosystem-Long Term Ecological Research (CCE-
LTER) program (Ohman and Venrick, 2003).

We start by showing differences between Rrs estimates obtained by
different sensors.We then show that these differences are transferred to
differences in NPP estimates in spite of using a formerly adapted set of
algorithms to derive IOPs (aph(440)). We emphasize that this study is
not aiming to find the best parameters of the NPP model derived from
fundamental studies of phytoplankton photophysiology. Rather, we
show problems encountered when applying an NPP model to noisy
satellite datawith sensor-specific anomalies and our empirical attempts
to find optimal values for the model parameters.

2. Data and methods

2.1. In situ measurements of NPP

On-deck 14C incubations have been performed on quarterly CalCOFI
cruises since 1984. The half-day (local noon to sunset) primary produc-
tion values, integrated over the euphotic depth, are multiplied by 1.8 to
obtain equivalent 24 h productivity (Eppley, 1992). In this study we
Fig. 1. Locations of the satellite (MODIS-Aqua,MERIS and SeaWiFS)match-ups (filled circles)wi
from coast to offshore where satellite-to-satellite Rrs443match-ups were assembled.
used a subset of 861 stations occupied over the time period from 18-
Sept-1997 to 12-Feb-2012 when satellite data from at least one of the
three sensors of SeaWiFS, MODIS-Aqua (MODISA) and MERIS were
available. The CalCOFI study area covers different regions of the California
Current from coastal to about 600 km offshore (Fig. 1). In situ NPP
measurements have considerable uncertainty with more
uncertainty at low values. Saba et al. (2011) assumed uncertainties
in NPP decreasing as a linear function of increasing log10(NPP),
from 50% for NPP ≤50 mg C m−2 d−1 to 20% for NPP ≥ 2000 mg C
m−2 d−1. The distribution of in situ CalCOFI vertically integrated
NPP values is log-normal with the mode between 200 and 400 mg
C m−2 d−1 (Fig. 1 in Kahru et al., 2009).

2.2. Match-ups between satellite and in situ data

The validation of satellite products using quasi-simultaneous and
spatially collocated measurements (match-ups) of satellite and in situ
data followed the general procedures of previous studies (e.g. Bailey
and Werdell, 2006; Kahru and Mitchell, 1999; Kahru et al.,
2012; Werdell and Bailey, 2005). We acquired coincident Level-2
(i.e. processed to surface quantities but unmapped) data of SeaWiFS
(1997–2010, version 2010.0), MODISA (2002–2012, version 2012.0)
and MERIS (2002–2012, 3rd reprocessing). Full resolution (~1 km)
SeaWiFS and MODISA data were obtained from NASA's Ocean Color
web (http://oceancolor.gsfc.nasa.gov/) and the RR data (~1 km) of
MERIS were obtained from ESA's MERIS Catalogue and Inventory
(http://merci-srv.eo.esa.int/merci/welcome.do). For each Level-2 pixel
we used the corresponding Level-2 flags. A pixel was determined
valid if none of the following flags were set: ATMFAIL, LAND,
HISATZEN, CLDICE, CHLFAIL, SEAICE, NAVFAIL, HIPOL and PRODFAIL
(see http://oceancolor.gsfc.nasa.gov/VALIDATION/flags.html for expla-
nation of the flags). For MERIS the following flags made the pixel inva-
lid: LOW SUN, HIGH_GLINT, ICE_HAZE, SUSPECT, COASTLINE, PCD_19,
th in situ primary productivitymeasurements. The rectangle shows the location of the strip
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PCD_18, PCD_17, PCD_16, PCD_15, PCD_14, PCD_1_13, CLOUD and
LAND. All variables in Level-2 files were extracted from 3 × 3 pixel
windows centered at the pixel nearest to the in situ sample.We accept-
ed only thosematch-upswith at least 3 valid pixels (out of 9) andwith-
in 24 h of the in situ sample. We used this relaxed matchup criteria
(rather than themore common 3 hourwindow) to increase the number
of matchups, particularly at high NPP values.We note that the temporal
decorrelation scales for the southern California Current are ~5 days
(Frolov et al., 2013), or significantly longer than the 24 hour window.
The mean Rrs(λ) value of valid pixels within the 3 × 3 pixel window
was used as input to the Lee et al. (2002) quasi-analytic algorithm
(QAA) model as optimized by Kahru et al. (2013) and the derived
coefficients of total absorption at 490 nm, a(490), phytoplankton
absorption at 440 nm, aph(440), and particulate backscattering at
490 nm, bbp(490)were used as input toAph-PP. The spatial distribution
of match-ups with in situ measurements of NPP is shown in Fig. 1.

2.3. Satellite to satellite match-ups

In order to evaluate the errors of the satellite Rrs(λ) estimates we
used Rrs data from spatially and temporally overlapping satellite
sensors. We created satellite to satellite match-ups by finding the
same pixel in Level-3 globally binned and mapped 9-km datasets
for the same day. Daily Level-3 data are binned using the best quality
Level-2 data, excluding lower quality pixel values that are present in
Level-2 datasets. Temporally overlapping daily data are available
from three sensors (SeaWiFS, MODISA and MERIS). Differences of a
few hours in the timing between sensors are unavoidable as SeaWiFS
overpass time was nominally at local noon but drifted later towards
the afternoon while MODISA overpass time was approximately
1:30 PM and MERIS overpass time approximately 10 AM. SeaWiFS
and MODISA Level-3 datasets were downloaded from NASA's
Ocean Color website (http://oceancolor.gsfc.nasa.gov/) and MERIS
Level-3 data were obtained from ESA's GlobColour Project at
ftp://hermes.acri.fr/meris_l3. MERIS data were remapped to the same
grid as the NASA data. Comparing Level-3 Rrs data instead of Level-2
data was justified as Level-3 data are binned to a common grid (either
4-km or 9-km grid) and gridded data are more directly comparable.
We also compared the approximately 1-km unbinned Level-2 pixels
of SeaWiFS to those of MODISA by mapping all 2004 Level-2 datasets
to a common 1-km map.

2.4. Applying the Aph-PP model to match-ups with in situ data

The absorption-based productivity (Aph-PP) algorithm (Lee et al.,
2011) is based on the relationship PP = ϕ × PAR × aph where PP is
primary production, ϕ is quantum yield of photosynthesis and aph is
the coefficient of phytoplankton absorption. A spectrally integrated
form of PP at depth z is:

PP zð Þ ¼ ϕm
Kϕ exp −ν � E zð Þð Þ

Kϕ þ E zð Þ aph� E zð Þ½ �; ð1Þ

with

E zð Þ ¼ E0 exp −KPAR zð Þ � zð Þ: ð2Þ

KPAR(z) is the vertical attenuation coefficient of PAR, which is modeled
as a function of absorption and backscattering coefficients according
to Lee et al. (2005):

KPAR zð Þ ¼ K1 þ K2= 1þ zð Þ0:5 ð3Þ
with

K1 ¼ K1−a0 þ K1−a1 a 490ð Þð Þ0:5 þ K1−a2bb 490ð Þ
h i

K1−7 þ K2−7 sin θað Þð Þ
ð4Þ

K2 ¼ K2−a0 þ K2−a1 a 490ð Þ þ K2−a2bb 490ð Þ½ � K1−6 þ K2−6 cos θað Þð Þ ð5Þ

and assuming that the solar zenith angle above the surface θa is equal
to 30°.

The term associated with ϕm and Kϕ on the right side of Eq. (1) rep-
resents phytoplankton physiology. Default values of themodel parame-
ters usedwere: ϕm=0.12mg C E−1, Kϕ=10 Em−2 d−1, and ν=0.01
(Em−2 d−1)−1. aph on the right side of Eq. (1) is the absorption coeffi-
cient of phytoplankton at 443 nm. E(z) in Eqs. (1) and (2) is the
PAR value at depth z, with E0 for surface PAR. Water-column PP (PPeu)
was calculated by integrating PP(z) between 0 and 100 m with a step
of 2 m (or down to 1% of E0).

Surface PAR (E0 in Eq. (2), E m−2 d−1, Frouin et al., 2003) was ob-
tained from the standard mapped products of SeaWiFS, MODIS-Terra
and MODIS-Aqua and merged by averaging valid pixels from different
sensors. Due to their different orbits, the relatively small gaps between
subsequent satellite orbits fall to different locations and were covered
by one or more sensors. Additional errors may be introduced by using
daily PAR instead of instantaneous PAR as the estimated KPAR(z) is not
exactly the attenuation coefficient of daily PAR.We note that alternative
PAR calculation schemes exist (Mobley and Boss, 2012) which could
potentially improve the Aph-PP model. For this analysis we used the
standard formulation to match the application of Lee et al. (2011) for
the Southern Ocean.

The values of the coefficients in the Aph-PP model (Eq. (1)) as well
as the coefficients in the light parameterization (Eqs. (4) and (5))
were used as the starting point of theminimization process which opti-
mizes the values of these 13 coefficients for each of the 3 sensors by
minimizing the resulting differences with in situ match-ups. For the
optimization we used the Trust-Region method, a variant of the
Levenberg–Marquardtmethod as implemented in theNMath numerical
libraries (http://www.centerspace.net/). As both Chla and NPP are
known to follow lognormal distributions, we used log10 transformed
data in the optimization. After running the minimization procedure
there was still residual bias whichwas removedwith the following em-
pirical adjustment: YAdjusted = (Y — intercept)/slope, where Y is the
vector of predicted values after applying the coefficients derived in the
optimization procedure, YAdjusted is the adjusted vector of output
values, intercept and slope are respectively the intercept and slope of
the reduced major axis (RMA) regression between Y and the vector of
in situ measurements X. RMA regression is more appropriate than the
standard ordinary least squares regression as the independent variable
(either themeasured in situ values or the estimates using another satellite
sensor) is measured with error (Sokal and Rohlf, 1995).

2.5. Statistical estimates of model performance

We used four statistical measures to assess the performance of the
algorithms in comparisons between satellite products and in situ obser-
vations (satellite to in situ match-ups) and three statistical measures
between different satellite sensors (i.e. satellite to satellite match-
ups). In satellite to in situ match-ups Oi is the ith observation of an in
situ variable and Pi is the corresponding predicted satellite variable. In
satellite to satellite match-ups the choice of the observed versus pre-
dicted variable is arbitrary butweusedMODISA as the common variable
when comparing with MERIS and SeaWiFS values. For a measure of co-
variance that shows howmuch variance in one variable can be predict-
ed from another we used the coefficient of determination (R2) on log10

http://oceancolor.gsfc.nasa.gov/
http://www.centerspace.net/
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transformed variables. As an estimate of general bias (e.g. too high or
too low) we used the Median Relative Percent Error (MRPE) that was
calculated as MRPE = 100 ∗ median ((Pi − Oi)/Oi). As an estimate of
scatter we used the Median Absolute Percent Error (MAPE) that was
calculated asMAPE=100 ∗ median (Abs((Pi−Oi)/Oi)). For comparison
with previous studies (e.g. Kahru et al., 2009) we added a measure of
total variance, root–mean–square difference (RMSD) applied to log10
transformed variables:

RMSD ¼ 1
n

Xn
i¼1

log Pi− log Oi½ �
2

 !1=2
A

C

Fig. 2. Inter-sensor comparison of log10-transformed remote sensing reflectance at 443 nm (Rrs
red line is the one-to-one line, yellow line is the least squares linear regression. Small red circles
log10 units) into 100 equal sections and findingmedian values for the abscissa variable and the c
versus MODISA in 2004; C, subset of A of January, 2004; D, subset of B of January, 2004.
3. Results

3.1. Comparison of remote sensing reflectance from different sensors

Temporally and spatially overlapping satellite data from SeaWiFS,
MODISA andMERIS were used to evaluate the accuracy of Rrsmeasure-
ments by comparing the Rrs values of daily, binned 9-km datasets with
corresponding Rrs values of another sensor. In order to limit the number
of overlapping pixels (which can be overwhelming) but to cover the full
range ofwatermasses from coastal to offshore,we selected a test area as
a strip of approximately 100 km wide and approximately 560 km long
stretching from the coast to offshore in SW direction just south of
Pt. Conception along the border between Central and Southern California
(Fig. 1). Fig. 2 shows a comparison of Rrs443 acquired bydifferent sensors
B

D

443). Black dots show same daymatch-ups between Level-3 global 9-km binned datasets,
are themedian bracket points thatwere generated by dividing the full horizontal range (in
orresponding points of the ordinate variable. A,MERIS versusMODISA in 2004; B, SeaWiFS
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during the full year of 2004 as well as monthly subsets of January, 2004.
Year 2004 was chosen as data from SeaWiFS, MODISA and MERIS were
available and all sensors were in good health with minimal calibration
problems. Each point in Fig. 2 corresponds to the samepixel value obtain-
ed on the same day but estimated at a slightly different overpass time by
a different satellite sensor. In spite of the vicarious calibration (Franz
et al., 2007) where satellite measurements of the different sensors are
fitted to the same high-quality field measurements of ocean remote
sensing reflectance, we note systematic differences. In addition to sys-
tematic differences, there is considerable random scatter, particularly at
low values. The coefficient of determination is slightly lower between
MODISA and MERIS but both relative and absolute errors are slightly
higher between MODISA and SeaWiFS (MRPE −9.7% versus 11% and
MAPE 15.4% versus 18.0%, Table 1). During any particular month the
correspondence between Rrs443 of different sensors can be even lower,
e.g. R2 = 0.51 in January, 2004 (Fig. 2D) or R2 can be higher but the rela-
tionship candeviatemore from the one-to-one relationship (Fig. 2C). The
ratio of the median bracket points (Fig. 3) shows that SeaWiFS Rrs443
values tend to be higher than the corresponding MODISA Rrs443 values
and MERIS Rrs443 tends to be lower than the corresponding MODISA
Rrs443. At high Rrs443 the ratios are close to 1, indicating better agree-
ment offshore, but at low Rrs443 the scatter increases drastically and
the median ratios diverge, indicating significant differences between
sensors in the coastal zone where Rrs443 is typically low. When Rrs
values approach zero, the scatter in log10 transformed values increases
dramatically and we get spurious estimates. Small differences between
sensors are expected as different satellite sensors have different optical
characteristics (even if they have the same nominalwaveband), different
sensitivities, signal to noise ratios, calibration and degradation histories.
Some of the observed variability is due to true changes in surface proper-
ties during different satellite overpass timeswhile the restmust be due to
errors caused by different observation geometries, variable influences by
sun glint, solar zenith angle, and clouds.

In this paper, we do not intend to make a comprehensive analysis of
the differences and errors between the various Rrs bands of the different
sensors and just note the significant differences. We use the Rrs443
band as an example as it is important for the detection of Chla and phy-
toplankton. Both systematic and randomvariations in Rrs443 (andother
bands) affect our estimates of IOPs (or Chla) and limit our ability to ac-
curately estimate NPP. We use the existence of systematic differences
between Rrs estimates by different satellite sensors as justification for
designing empirical algorithms for IOPs and NPP optimized for each
sensor and not for ideal, model generated data.

3.2. Optimizing the Aph-PP model for individual satellite sensors

We used the Lee et al. (2002) quasi-analytic algorithm (QAA,
http://www.ioccg.org/groups/Software_OCA/QAA_v5.pdf) that was
optimized to our IOP match-ups (Kahru et al., 2013). The optimized
QAA was applied to Level-2 satellite Rrs match-ups with in situ NPP
data and the following products were used as input to the Aph-PP
model: the total absorption coefficient at 490 nm (a490), coefficient
of particulate backscatter at 490 nm (bbp490), and coefficient of phyto-
plankton absorption at 440 nm (aph440). For PAR, we used a merged
Table 1
Statistical relationships between Rrs443 estimated for the same pixel, same day by
different satellite sensors. MRPE = median relative percent error, MAPE = median
absolute percent error.

R2 MRPE MAPE

MERIS/MODISA, 2004 0.576 −9.7 15.4
MERIS/MODISA, January—2004 0.651 −14.0 15.9
SeaWiFS/MODISA, 2004 0.581 11.0 18.0
SeaWiFS/MODISA, January—2004 0.513 11.7 19.5
SeaWiFS/MODISA L2, 2004 0.631 7.1 13.4
daily PAR estimate derived from standard PAR products of SeaWiFS,
MODIS-Aqua and MODIS-Terra, matched spatially to the pixel nearest
to the in situ NPP measurement. Although the output of the Aph-PP
model using standard coefficients has the same order of magnitude
with in situ NPP, the estimates are considerably biased (Fig. 4, top
row; Table 2). After tuning the 13 coefficients included in Eqs. (1), (4)
and (5) by minimizing the differences with in situ data we were able
to remove the systematic bias and somewhat reduce the scatter.
When models with the same coefficients are applied to Rrs data from
different satellite sensors, the pooled datasets have typically lower R2

than the respective R2 of the individual sensors (Fig. 4 top row and
Figs. 6 to Fig. 7 top row). This is due to the pooling of data with some-
what different relationships (as illustrated in Fig. 4A, B, C). For example,
NPP estimates assuming standard Aph-PP model produced R2 for
match-ups with individual sensors as 0.318, 0.373 and 0.497 but only
0.282 for the pooled match-ups (Table 2). The differences in the Rrs
values of different sensors increase the divergence in the pooled results,
decrease R2 and make it error-prone to apply models with standard co-
efficients to Rrs of different sensors. On the other hand, fitting separate
models to match-ups from individual sensors makes the output more
compatible and produces higher R2 of the pooled datasets (Table 2).
However, even after optimization the coefficient of determination
(R2) remained below 0.6 (Fig. 4, bottom row). NPP values derived
with SeaWiFS data tend to have higher R2, particularly for the standard
model (Fig. 4C). The standard Aph-PPmodel assumes vertically uniform
absorption and backscattering properties in the surface mixed layer.
Vertical profiles of phytoplankton (measured as Chla) in the California
Current often show subsurface chlorophyll maxima (Cullen and
Eppley, 1981; Millan-Nunez et al., 1997). When the subsurface maxi-
mum is above the depth of the euphotic zone then it may add substan-
tially to the production of the water column (Platt and Sathyendranath,
1993). We therefore modeled the vertical Chla distribution with the
Gaussian distribution of Platt et al. (1988) using the mean parameter
values for Central California inshore region from Millan-Nunez et al.
(1997) (Fig. 5). As shown by Frolov et al. (2012), the vertical Chla distri-
bution off Central California is variable and consistent parameteriza-
tions allowing accurate prediction of the vertical profile from surface
value are not available. We therefore consider our vertical profile a
“generic” vertical profile that predicts increasing Chla in the subsurface
layer which is consistent with observations but which does not pretend
to be an accurate parameterization for any particular match-up. We
then assumed that the relative vertical distributions of the IOPs (a490,
bbp490 and aph440) were similar to the relative vertical profile of
Chla. While this assumption is probably not very accurate even in Case

http://www.ioccg.org/groups/Software_OCA/QAA_v5.pdf
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Fig. 4. Results of applying the Aph-PPmodel to Level-2 data fromMODIS-Aqua (left column), MERIS (middle column) and SeaWiFS (right column) compared tomatch-ups of in situ daily
vertically integrated NPP. The Aph-PP model assumes mixed surface layer and is using the default coefficients (top row) or optimized coefficients (bottom row).
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1 waters where IOPs are positively well correlated with Chla, it is a first
approximation to the vertical structure having a subsurface Chla maxi-
mum. It appears that by assuming the generic vertical distribution we
can obtain a slight increase in the predictive skill of the Aph-PP model
(Fig. 6, Table 2).
Table 2
A comparison of the performance of the standard Aph-PP model (mixed layer) versus the
optimizedmodel for mixed layer and the optimizedmodel with generalized vertical profile
as applied to match-ups with in situ NPP from MODIS-Aqua (MODISA/in situ), MERIS
(MERIS/In situ), SeaWiFS (SeaWiFS/in situ) and from all sensors combined (all sensors/
in situ). R2 = coefficient of determination, MRPE = median relative percent error,
MAPE = median absolute percent error, RMSD = root–mean–square deviation. Bold
numbers show improvement from standard to optimized and to optimizedwith a generic
vertical profile. R2 and RMSD are calculated for log10-transformed variables.

Match-up type Measure Standard
Aph-PP

Optimized Aph-PP
for mixed layer

Optimized Aph-PP
for generalized
vertical profile

MODISA/in situ R2 0.318 0.466 0.532
MRPE −29.5 −2.5 −0.9
MAPE 41.7 31.6 32.4
RMSD 0.286 0.221 0.206

MERIS/in situ R2 0.373 0.494 0.540
MRPE −30.1 −4.1 −2.1
MAPE 43.2 32.9 33.4
RMSD 0.291 0.225 0.210

SeaWiFS/In situ R2 0.497 0.568 0.579
MRPE −41.4 1.1 3.1
MAPE 46.6 35.9 32.4
RMSD 0.360 0.218 0.202

All sensors/in situ R2 0.282 0.526 0.562
MRPE −35.2 −0.7 1.2
MAPE 42.1 34.5 31.6
RMSD 0.337 0.218 0.206
4. Discussion

Satellite ocean color products are critical for building Climate Data
Records (CDR; National Research Council, 2004). However, merging
data from multiple satellite sensors in order to extend the length of
the time series beyond the limited lifetime of a single sensor is still
problematic. Applying models that are sensitive to sensor-specific dif-
ferences in satellite Rrs values may magnify these differences and pro-
duce incompatible time series, particularly when switching from one
sensor to another. This leads to significant errors in trend estimates. In
order to make output from different sensors compatible with each
other, we tune the model for each individual sensor by using match-
ups with in situ data. Ideally, a more straightforward approach would
be to remove the anomalies from satellite Rrs instead of fitting in situ
data to different estimates of Rrs. However, the inter-sensor anomalies
in Rrs are much more complex than has been acknowledged to date
(Mélin, 2013). In our analysis we explicitly acknowledge the existence
of differences between the Rrs products of different sensors and try to
create optimized algorithms for each sensor in order to produce com-
patible data products that can then be merged in space and time. Our
analysis is restricted by availability of well-distributed in situ data. Our
method is essentially a “regional optimization” as it depends on a
regional set of in situ data and it assumes that the Rrs anomalies are
temporally consistent. To retrieve IOPswe used theQAAmodel adapted
previously in Kahru et al. (2013). Ideally, that should have removed the
effect of inter-sensor differences in Rrs. However, the calculated NPP
products clearly showed large differences and inaccuracies (Fig. 4)
which was probably due to a combination of random errors in satellite
retrievals and poorly distributed in situ datasets used in the optimiza-
tion of the IOP algorithms. Here we have used empirical optimization
of the absorption-based productivity model for three different satellite
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sensorswith the goal to produce results that are compatible with in situ
measurements.

Gregg and Conkright (2001) and Gregg et al. (2009) pioneered the
approach of blending satellite Chla data with in situ data. Kahru et al.
(2012) optimized band-ratio Chla algorithms in the California Current
for multiple sensors and built a merged time series. Kahru et al.
(2013) used the same idea in a more complex task to produce compat-
ible IOP estimates from multiple sensors. Our previous analysis of
various NPP algorithms as applied to remotely sensed SeaWiFS data
and compared to CalCOFI in situ productivity measurements (Kahru
et al., 2009) showed that all tested algorithms were somewhat biased
but explained approximately 60% of the total variance. The absorption-
based Lee et al. (2011) algorithm has theoretical advantages over tradi-
tional productivity algorithms, and is much improved overly purely
empirical algorithms since it is based on mechanistic, physiological
parameters. This should lead the way to improved estimates of NPP if
these underlying parameters can be adequately estimated or derived
from remote sensing data. However in practice this approach also did
not explain more than about 60% of the total variance and had absolute
error over 30% which is similar to other algorithms.

There are multiple reasons why most commonly used NPP models,
including the Aph-PP model, have similar errors. First, satellite mea-
surements of Rrs have significant errors (~15–18%) whichmay bemag-
nified when sensitive inversion algorithms are applied to produce IOPs.
A B

Fig. 6. Results of applying the Aph-PPmodel to Level-2 data fromMODIS-Aqua (A),MERIS (B) a
PP model assumes generalized vertical profile and optimized coefficients.
In high-chlorophyll waters Rrs443 approaches zero and relative errors
are particularly high. Over the full range of variability, estimates of
a490 are more robust than estimates of other IOPs. Second, parameters
dependent on phytoplankton physiology, community composition and
light adaptation are poorly known and their variability is not adequately
captured in current productivity models. Third, seasonal variability in
PAR related to the solar zenith angle is ignored. We intend to work on
this in the future. Better characterization of the subsurface light field is
probably needed. Fourth, the depth variation of phytoplankton biomass
(or absorption) is poorly parameterized. Including a simple generalized
depth profile resulted in slightly increased coefficient of determination.
Jacox et al. (2013) using in large part the same CalCOFI in situ dataset,
showed that adding details of the subsurface chlorophyll and light
profiles provided significant improvement in the skill of the models.
Including vertical profiles of measured light and chlorophyll concentra-
tion improved the predictions of NPP considerably (R2 = 0.77). Mean
Chla depth profiles can be parameterized but the accuracy of these pa-
rameterizations has been shown to be low, at least off Central California
(Frolov et al., 2012). As shown by Jacox et al. (2013), using autonomous
underwater gliders, capable of measuring subsurface properties on
long-term, long-range deployments, can provide significantly improved
depth profiles of light and phytoplankton biomass and improve the skill
of productivity algorithms. While gliders are increasingly routinely
deployed, coverage remains insufficient at this time to dramatically im-
prove satellite-based NPP estimates.

The remaining ~25% variability between modeled and measured
NPP includes both the poorly constrained variability in physiology,
and the errors associated with in situ productivity estimates
(e.g. Marra, 2008). A recent comparison of the CalCOFI NPP data,
VGPM, and oxygen isotope estimates suggest that methodological is-
sues could consistently lower the in situ NPP rates (Munro et al.,
2013). However, this would probably not account for themodel perfor-
mance reported here, which generally underestimates the in situ NPP
values, but it does highlight the difficulty of assessing the accuracy of
the in situ data. The absorption-based approach also requires parame-
terization of the photosynthetic quantum yield. Here we used the de-
fault values (see Section 2.4), but a previous analysis of CalCOFI data
(Sosik, 1996) showed 10-fold variation in this value, strongly related
to environmental factors including optical depth, distance to the
nutricline, and temperature, with less variability in the upper mixed
layer compared to values deeper in the water column. Similarly,
Kudela and Chavez (1997) showed 6-fold variation in the quantum
yield of photosynthesis from data collected in central California. Other
analyses have shown a strong relationship between quantum yield
and iron stress (e.g. Hiscock et al., 2008), and evidence for potential
regulation of phytoplankton growth (NPP) by iron in the southern
California Current (King and Barbeau, 2007). This suggests that there
C

nd SeaWiFS (C) compared tomatch-ups of in situ daily vertically integrated NPP. The Aph-
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The Aph-PP model assumes mixed top layer (left columns) and generalized vertical profile (right column) while using the default coefficients (top row) and the optimized coefficients
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is room for improvement in the absorption-basedmodel by parameter-
izing some of these environmental variables and allowing the physio-
logical parameters to vary accordingly. Optical depth, temperature,
and potentially, iron stress (McGaraghan and Kudela, 2012) can be
parameterized from remote sensing. The link between nutricline
depth and improvement in NPP estimates by incorporating depth pro-
files (Jacox et al., 2013) also points to potential improvements of the
absorption-based models with the inclusion of vertical profiles from
gliders.
5. Conclusions

We show that in spite of recent efforts in vicarious calibration of
satellite sensors, differences between Rrs products (approximately 15–
18% for Rrs443) of different sensors (MODIS-Aqua, MERIS, SeaWiFS)
are large enough to cause significant differences in thederived products,
such as IOPs and NPP. Even when using IOP products that have been
produced by regional algorithms (tuned to in situ IOP measurements)
as inputs to the absorption-based productivity model, the estimates of
NPP were biased and systematically different between sensors. Optimi-
zation by means of adapting coefficients for each sensor reduced the
bias and somewhat reduced the scatter but still failed to explain more
than 60% of the total variation in measured NPP. Uncertainties in satel-
lite estimates of Rrs as well as uncertainties in parameters representing
phytoplankton physiology, light adaptation and depth distribution are
likely limiting our current capability to accurately estimate NPP from
space in the California Current. Moving towards IOP-based models of
NPP is clearly advantageous in that it provides additional variables
and is based on a theoretical, rather than empirical, perspective. How-
ever, given the similar predictive performance for NPP regardless of
algorithm (Kahru et al., 2009), it is unlikely that additional significant
advances will be made by developing new algorithms. The most prom-
ising near-term improvement will likely come from a combination of
reduced error in Rrs, merging satellite and in situ observations, and per-
haps introduction of more refined estimates of biomass and physiology
such as through the development of phytoplankton functional type
models (Friedrichs et al., 2009; Nair et al., 2008) and parameterization
of varying quantum yields (Sosik, 1996).
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Appendix A. List of notations and acronyms.
Symbol Explanation Units

a Coefficient of absorption m−1

a490 Coefficient of absorption at 490 nm m−1

aph Coefficient of absorption by phytoplankton m−1

aph440 aph at 440 nm m−1

bbp Coefficient of backscattering by particles m−1

bbp490 bbp at 490 nm m−1

MAPE Median Absolute Percent Error %
MRPE Median Relative Percent Error %
MERIS Medium resolution imaging instrument on ESA

Envisat satellite
MODISA Moderate Resolution Imaging

Spectroradiometer on NASA Aqua satellite
PAR Photosynthetically available radiation E m−2 s−1

SeaWiFS Sea-viewing Wide Field-of-view Sensor
R2 Coefficient of determination
RMA Reduced Major Axis (regression)

−1
Rrs Remote sensing reflectance sr
Rrs443 Remote sensing reflectance at 443 nm sr−1
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