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a b s t r a c t

The Regional Ocean Modeling System (ROMS) 4-dimensional variational (4D-Var) data assimilation tool has

been used to compute two sequences of circulation analyses for the U.S. west coast. One sequence of analyses

spans the period 1980–2010 and is subject to surface forcing derived from relatively low resolution atmo-

spheric products from the Cross-Calibrated Multi-Platform wind product (CCMP) and the European Centre

for Medium Range Weather Forecasts (ECMWF) reanalysis project. The second sequence spans the shorter

period 1999–2012 and is subject to forcing derived from a high resolution product from the Naval Research

Laboratory Coupled Ocean Atmosphere Mesoscale Prediction System (COAMPS). The two analysis periods are

divided into eight day windows, and all available satellite observations of sea surface temperature and sea

surface height, as well as in situ hydrographic profiles are assimilated into ROMS using 4D-Var. The perfor-

mance of the system is monitored in terms of the cost function and the statistics of the innovations, and the

impact of data assimilated on the circulation is assessed by comparing the posterior circulation estimates

with the prior circulation and the circulation from a run of the model without data assimilation, with partic-

ular emphasis on eddy kinetic energy. This is part I of a two part series, and the circulation variability of the

4D-Var analyses will be documented in part II.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The California Current System (CCS) is the dominant circulation
feature along the west coast of North America where equatorward
winds drive coastal upwelling, leading to high levels of primary
productivity. The CCS is the eastern boundary current of the North
Pacific subtropical gyre, and the dynamics of this region are of inter-
est because of the associated energetic mesoscale circulation and pro-
nounced seasonal cycle of upwelling, especially important in central
California from April to July (Hickey, 1979, 1998; Checkley and Barth,
2009). The CCS and associated ecosystems are influenced by known
modes of climate variability, such as the El Niño Southern Oscillation
(ENSO) (e.g. Lynn and Bograd, 2002), the Pacific Decadal Oscillation
(PDO) (Mantua et al., 1997), and the North Pacific Gyre Oscillation
(NPGO) (Di Lorenzo et al., 2009).
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This paper is the first of a two part series that describes a se-
quence of retrospective analyses of the CCS circulation computed us-
ing a high resolution configuration of the Regional Ocean Modeling
System (ROMS) in conjunction with 4-dimensional variational (4D-
Var) data assimilation, spanning the period Jan. 1980 to Dec. 2012. In
contrast to most previous analyses of the CCS that are available from
global data assimilation products (such as those available through the
Global Ocean Data Assimilation Experiment (GODAE)), the analyses
described here were performed at a resolution that largely captures
the mesoscale circulation and the influence of complex coastal ge-
ometry and bathymetry. Furthermore, other analyses of the CCS are
more limited in time and do not adequately resolve low-frequency
variability. Another and original feature of our analyses is that they
utilize some of the best high resolution atmospheric forcing products
that are available from regional atmospheric models and regional re-
analyses, which resolve many important features of the surface forc-
ing such as wind intensification in the vicinity of capes (Castelao
and Barth, 2006) and local topographically enhanced wind stress curl
(Enriquez and Friehe, 1995; Doyle et al., 2009), although excessive
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wind stress curl near the coast can be detrimental to model circula-
tion estimates as well (Capet et al., 2004).

While regional circulation models, such as ROMS, have been de-
veloped for modeling the complex coastal circulation environment,
they provide accurate analyses of the physical circulation only if the
initial conditions, boundary conditions and model parameters are ac-
curately specified. Data assimilation methods can be used to estimate
these inputs to the model by identifying the best linear unbiased
estimate (BLUE) of the circulation, which in the case of linear dy-
namics and Gaussian errors, is equivalent to the maximum likelihood
estimate.

Data assimilation can also be formally related to Bayes’ theorem.
The circulation obtained from a model is uniquely determined by
the initial conditions, boundary conditions, and model parameters,
which are referred to collectively as the control variables. We will de-
note by z the vector of control variables, and by yo the vector of ocean
observations. Treating both z and yo as random variables, Bayes’ the-
orem relates the conditional probability distribution of the unknown
control variables given the observations, denoted P(z|yo), to the prior
distribution P(z) of the unknowns z and the data distribution P(yo|z)
which quantifies the distribution of the measurement errors in rela-
tion to the unknowns z. Formally Bayes’ theorem can be expressed
as:

P(z|yo) = P(yo|z)P(z)/P(yo) (1)

where P(yo) is the marginal probability distribution and acts a nor-
malizing coefficient to ensure that the integral of P(z|yo) is one. It is
usual to express the observations as yo = H(zt ) + ϵ where H is called
the observation operator and zt represents the true control vector.
The vector of observation errors ϵ have a covariance given by R, and
the observation operator H may include the model equations. For
Gaussian distributed errors in z and yo, then P(z|yo) ∝ exp(−JNL),
where:

JNL = 1

2
(z − zb)T D−1(z − zb) + 1

2
(yo − H(z))T R−1(yo − H(z)).

(2)

In (2) zb is the prior control vector and D is the covariance of the er-
rors in the prior. Data assimilation can then be viewed as identifica-
tion of the control vector z that maximizes the conditional probability
P(z|yo) (Wikle and Berliner, 2007). According to (2), P(z|yo) will be a
maximum when JNL has its minimum value. In control theory, JNL is
usually referred to as the cost function or penalty function.

Variational approaches are often used to identify the z that min-
imizes JNL, and were first introduced in meteorological applications
by Lewis and Derber (1985), Le Dimet and Talagrand (1986), and
Talagrand and Courtier (1987). During 4D-Var, the model is used to
dynamically interpolate in space and time (via H) all of the informa-
tion gathered by the irregular sampling of the observations, result-
ing in a 4D picture of the ocean circulation that represents the BLUE
during the period spanned by the observations. Two approaches are
generally used: one in which the minimization of JNL is performed in
the space spanned by the control vector, referred to as the primal ap-
proach, and one in which the minimization of JNL is performed in the
space spanned by the observations, referred to as the dual approach.
Since the control vector is usually much larger than the number of
ocean observations, the dual approach is potentially more amenable
in high resolution models. Only a handful of ocean models use the 4D-
Var approach, including MITgcm (Wunsch and Heimbach, 2007), the
Ocean Parallèlisè (OPA) model (Weaver et al., 2003), the Nucleus for
European Modelling of the Ocean (NEMO; Mogensen et al., 2012), the
Navy Coastal Ocean Model (NCOM; Ngodock and Carrier, 2013) and
ROMS (Moore et al., 2011a; Kurapov et al., 2009). However, ROMS is
somewhat unique in terms of the tools that are available in support
of both the primal or dual approaches. Moore et al. (2011a, 2011b),

2011c) describe in detail all of the features currently available for the
ROMS 4D-Var systems.

The current application of ROMS 4D-Var to the CCS was preceeded
by the studies of Broquet et al. (2009, 2011) which were impor-
tant in demonstrating the 4D-Var approach and methodology that
is used here. In the present study, we have extended this previous
work and compute historical analyses of the CCS spanning two dif-
ferent periods: the 31 year period 1980–2010 (hereafter referred to
as WCRA31), and the 14 year period 1999–2012 (hereafter WCRA14).
During WCRA31, the model surface forcing was derived from a com-
bination of atmospheric products with horizontal resolutions rang-
ing from 25–200 km. While these products capture well the large-
scale components of the atmospheric circulation, as noted earlier, the
coastal orography can significantly influence the near-shore atmo-
spheric circulation. Therefore during WCRA14 the model was forced
by a higher resolution product with a resolution ranging from 3–
9 km. As such, during the overlapping period 1999–2010, WCRA14
and WCRA31 demonstrate the impact of high resolution forcing on
the ocean circulation estimates. A future publication, hereafter re-
ferred to as Part II, will explore the circulation variability within
WCRA31 and its relation to ENSO, the NPGO and the PDO.

It should also be mentioned that there have been other signifi-
cant data assimilation efforts in the context of the CCS. Li et al. (2008,
2009) and Chao et al. (2009) describe a 3D-Var data assimilation
system for ROMS which is also currently used to compute nowcasts
and forecasts for the CCS. Pan et al. (2011) and Ngodock and Carrier
(2013) have also used 3D-Var and 4D-Var respectively in conjunc-
tion with the Navy Coastal Ocean Model (NCOM), although this was
mainly a study of the Monterey Bay. 4D-Var circulation estimates of
the CCS off the Oregon coast have been computed by Kurapov et al.
(2009, 2011) and Yu et al. (2012) using the Advanced Variational Re-
gional Ocean Representer Analyzer (AVRORA), also applied in ROMS.
Circulation estimates of the CCS have also been computed using a
non-incremental formulation of 4D-Var in the MITgcm by Todd et al.
(2011). A more detailed review of these and other efforts can be found
in Edwards et al. (2015).

An outline of the paper is as follows. In Section 2, we describe
ROMS-CCS and discuss the prior information and observations that
are critical for identifying the BLUE using Eqs. (1) and (2). Section 3
introduces the 4D-Var set-up, discusses quality control of the obser-
vations, the minimization procedure, and the prior error statistics.
In Section 4, the performance of the minimization algorithm is dis-
cussed, along with a diagnostic analysis of the innovation statistics.
Differences between the posterior and prior estimates are examined
in Section 5, and the analyses are validated by comparing them to a
run of the model without assimilation. Comparisons with the assim-
ilated data set are also presented. We conclude with a summary and
discussion in Section 6 where limitations of the current analyses are
discussed.

2. ROMS CCS: model set-up, priors, and observations

In this section, we present the configuration of ROMS for the CCS,
and motivate our choice of prior information for the surface forcing
and boundary conditions used to compute WCRA31 and WCRA14. A
description of the observations assimilated into the model is also pre-
sented along with details of observation pre-processing.

2.1. The ROMS configuration

ROMS is a Boussinesq, hydrostatic, primitive equations ocean
model, and is well suited for modeling coastal regions characterized
by complex topography and bathymetry because of its advanced nu-
merics (Shchepetkin and McWilliams, 2004). ROMS possesses an ex-
tensive suite of numerical algorithms for advection and diffusion of
momentum and tracers, as well as a variety of parameterizations for
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Fig. 1. The ROMS domain and bathymetry (depth in m) used in WCRA31 and WCRA14.

Also shown are the regions considered in Section 5.1 and the CalCOFI lines considered

in Section 5.5 (white dashed lines).

horizontal and vertical mixing and open boundary conditions. A full
description of ROMS can be found at http://www.myroms.org. Fol-
lowing Veneziani et al. (2009) and Broquet et al. (2009), the CCS
domain spans the region 30°N-48°N, 134°W-115.5°W and is shown
along with the bathymetry in Fig. 1.

The horizontal resolution is 1/10°, while in the vertical 42 terrain-
following σ -levels were used that vary in thickness between 0.3–8 m
over the continental shelf and 7–100 m in the deep ocean. A prereq-
uisite for data assimilation is a model capable of generating a good
prior estimate of the circulation. Veneziani et al. (2009) have demon-
strated that the current configuration of ROMS CCS captures very well
many aspects of the observed circulation, and Broquet et al. (2009,
2011) have shown that it performs well in 4D-Var experiments. While
Marchesiello et al. (2003) find that a resolution of at least ∼ 1/20° is
required to represent coastal upwelling and the circulation energet-
ics in this region, the choice of 1/10° resolution used here represents
a trade-off between resolution of the smaller scale features of the cir-
culation and the computational cost of the 4D-Var approach. Never-
theless, the resolution used here is adequate to capture much of the
variability associated with mesoscale eddies which vary in size be-
tween 40 and 350 km, with a mean size of ∼ 165 km (Stegmann and
Schwing, 2007).

Following Moore et al. (2011a), the ROMS state-vector of grid-
point prognostic variables will be referred to as x and comprises the
potential temperature T, the salinity S, horizontal velocities (u, v), and
sea surface displacement (ζ ):

x = (T, S, ζ , u, v)T (3)

where superscript T denotes the vector transpose. For ease of nota-
tion, the non-linear ROMS will be denoted in sequel by M(ti, ti−1), so
that:

x(ti) = M(ti, ti−1)(x(ti−1), f(ti−1, ti), b(ti−1, ti)). (4)

The vector x(ti) represents the propagation in time by the dis-
cretized model subject to surface forcing, f(ti−1, ti), and lateral open
boundary conditions, b(ti−1, ti), during the time interval [ti−1, ti]. In
the ROMS data assimilation system and in keeping with Bayes’ the-
orem, the surface forcing and boundary conditions are regarded as
prior information, and are actually control variables in that they are
adjusted during the data assimilation procedure. In sequel, the prior
vectors of surface forcing and boundary conditions are denoted fb and
bb respectively.

2.2. Prior surface forcing

The prior surface forcing fb comprises surface fluxes of momen-
tum, heat and freshwater estimated from different sources of at-
mospheric data. For WCRA14 daily-averaged atmospheric variables
at standard heights from the Naval Research Laboratory’s Coupled
Ocean-Atmosphere Mesoscale Prediction System (COAMPS) were
used. The COAMPS forcing is derived from a series of nested grids
(Doyle et al., 2009) and the combined product used here has a reso-
lution of ∼ 3−9 km. Since COAMPS data is available only since Jan-
uary 1999, the surface forcing for WCRA31 (starting in 1980) was
derived from a combination of sources. Specifically, the 40 year re-
analysis from ECMWF (ERA40; Källberg et al., 2004) with a resolu-
tion of 2.5° was used for the period 1980–2001 and the more re-
cent ECMWF interim reanalysis (ERA Interim; Dee et al., 2011) with
a resolution of 0.7° for the period 2002–2010, along with the Cross-
Calibrated, Multi-Platform (CCMP) ocean wind product of Atlas et al.
(2011) with a resolution of 25 km that spans the period 1988–2010.
In both WCRA14 and WCRA31, the ocean surface fluxes were com-
puted using the bulk formulations of Liu et al. (1979) and Fairall et al.
(1996a, 1996b). As described by Atlas et al. (2011), CCMP is an anal-
ysis of surface winds computed using a 2D-Var procedure in which
ERA40 was used as the 2D-Var prior estimate. Therefore, to ensure
consistency between the CCMP-derived wind stress and surface heat
and freshwater fluxes used to force ROMS, we chose to use the ERA40
fields at 2.5° resolution as the 4D-Var prior in ROMS during the pe-
riod spanned by CCMP, rather than the higher resolution (75 km) ERA
Interim product, sacrificing resolution for consistency between the
various components of the surface forcing.

2.3. Prior open boundary conditions

Clamped time varying boundary conditions were used for trac-
ers and momentum at all open boundaries for both WCRA31 and
WCRA14. The prior open boundary conditions bb were taken from the
global Simple Ocean Data Assimilation Product (SODA; version SODA
POP 2.2.4) of Carton and Giese (2008). The Chapman (1985) bound-
ary conditions were applied to sea surface height, while the vertically
integrated flow was subject to the Flather (1976) condition. To damp
boundary waves, a 100 km wide sponge layer was also used adjacent
to the open boundaries, in which viscosity increased linearly from
4m2s−1 in the interior to 400m2s−1 at the boundary.

2.4. Observations

During both WCRA31 and WCRA14, all available observations from
in-situ instruments and satellite platforms were assimilated into the
model. An important first step in reducing data redundancy is the
pre-processing of observations that combines all observations of the
same state variable within each model grid cell over a 6 h time win-
dow to form super-observations. During 4D-Var, the contribution of
each observation to the posterior control vector is weighted accord-
ing to the sum of the variance of measurement error and the error
of representativeness. Observation errors and errors of representa-
tiveness are assumed to be mutually uncorrelated in space and time
resulting in a diagonal observation error covariance matrix R in (2).
While this is unlikely to be true in general, especially for gridded
satellite data, specification of correlated observation error is non-
trivial, and greatly complicates the 4D-Var procedure. This is dis-
cussed further in Section 3.

A summary of the different observation platforms and the nom-
inal error standard deviations assigned to each platform are shown
in Table 1. After the computation of super observations, the variance
entries in R were replaced by the sum of the variance of the indi-
vidual observations about the value of the super observation (taken
as an estimate of the error of representativeness) and the nominal
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Table 1

A summary of the observation types, observing platforms, data sources, the nominal measurement errors, and the period

covered.

Observation Type Observing platform Source Instrument error Period covered

SSH Altimeter Aviso, 1 day average 0.04 m 1993–2012

SST AVHRR/ Pathfinder NOAA Coast watch 0.6 °C 1981–2012

SST AMSR-E NOAA Coast watch 0.7 °C 2002–2010

SST MODIS-Terra NASA JPL 0.3 °C 2000–2012

Hydrographic data Various UK Met Office 0.5 °C for T 0.1 for S 1950–2012

Fig. 2. A time series of log10 of the total number of super observations available from EN3 and each satellite observing platform within the ROMS CCS model domain during each

month of the year during the period spanned by WCRA31. Dark blue: In situ observations from EN3; Red: SST from AVHRR/PathFinder; Black: SST from AMSR-E; Green: MODIS-

Terra; Magenta: SSH from AVISO; Light blue: observations rejected. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of

this article.)

error variance in Table 1. The super observations procedure affects
nearly every observation since satellite observations are averaged in
the horizontal and in situ observations in the vertical to match the
model resolution.

Fig. 2 shows a time series of log10 of the total number of super
observations from each observing platform that fall within the ROMS
CCS model domain during each month of the year spanning the full
period of WCRA31. Fig. 2 indicates that the bulk of the observations
available for assimilation are in the form of satellite measurements
of SST. As indicated in Table 1, SST observations are available from
several different platforms. The along track data from each platform
were used, and when multiple platforms are concurrently available,
the super observations from each platform were combined via the
super observation process. Only the number of super observations
for each individual platform are shown in Fig. 2. The individual su-
per observations from each platform were combined, if necessary, by
computing a standard minimum variance estimate using the nomi-
nal errors in Table 1 to compute the weights. While it can be argued
that the formation of super observations effectively reduces the un-
certainty in the assimilated data, no effort was made here to reduce
the error entries in R associated with super observations.

The SSH data used here were from the multi-mission 1/4° global
SSH fields created by the Archiving Validation and Interpretation
of Satellite Oceanographic data center (AVISO), specifically their
Data Unification and Altimeter Combination System (DUACS) ver-
sion DT-2010. These SSH data are produced by objective mapping of
multi-mission altimeter data (Dibarboure et al., 2011), and the data
assimilated into the model was a 1 day gridded composite. Prior to
assimilating the data, the mean dynamic topography of the AVISO
data averaged over the ROMS CCS domain was corrected to match
that of the model. A steric height correction was also applied using
the data of Willis et al. (2004). Rather than using along-track data,
gridded data were used because the version of 4D-Var employed to
compute the analyses does not allow for prior errors or observation
errors that are correlated in time. As a result, information from indi-
vidual along track observations can be quickly lost due to geostrophic
adjustment and becomes ineffective for constraining the model un-
less it persists over time. This issue can be alleviated using the grid-

ded products, which allows the large-scale gyre circulation and eddy
field to geostrophically adjust to the SSH field. However, this is not
an ideal solution because of the limitations of the objective map-
ping technique used to map the altimeter observations onto a regu-
lar grid. Furthermore, since satellite SSH observations near the coast
are known to be unreliable (Saraceno et al., 2008), only observations
more than 50 km from the coast were assimilated.

The in-situ hydrographic profiles of T and S assimilated into the
model were taken from the quality controlled EN3 data archive main-
tained by the UK Met Office as part of the European Union ENSEM-
BLES project (Ingleby and Huddleston, 2007). These observations are
available from a variety of different observing platforms that include:
expendable bathythermographs (XBTs), mechanical bathythermo-
graphs (MBTs), conductivity temperature depth devices (CTDs), free
drifting Argo profiling floats, and autonomous pinneped bathyther-
mographs (APBs) in the form of tagged marine mammals. The ver-
sion of EN3 used here is version 2a which includes the XBT and MBT
temperature error corrections of Levitus et al. (2009). No velocity ob-
servations were assimilated into the model. However, work is under-
way to augment the observations assimilated into the ROMS system
described here with coastal HF radar observations of surface current
that cover the entire U.S. West Coast out to approximately 100 km
offshore (Oke et al., 2015).

3. The incremental 4D-Var system

As noted in Section 1, the circulation of an ocean model is uniquely
determined by the initial conditions, surface forcing and boundary
conditions. In (2) these were identified as the control variables, z,
which we can now write as z = (x(t0)T , fT , bT )T where x(t0) repre-
sents the initial state vector, while f and b are vectors of surface forc-
ing and open boundary conditions at all time steps within the data
assimilation window. Similarly, the vector of prior control variables

is denoted by zb = (xb(t0)T , fbT
, bbT

)T . The prior control vector yields
an estimate that may differ significantly from the observations which,
following (2), are denoted by yo. Variational data assimilation seeks to
identify the control vector za that minimizes the cost function in (2)
which is a measure of the distance, in a Mahalanobis sense, between
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z and zb as well as yo and the projection of z into observation space.
The weighting functions used are the inverse prior error covariance
matrix and inverse observation error covariance respectively.

The 4D-Var data assimilation method employed here is iterative,
starting from the prior zb, and it searches for a sequence of new z
iterates that yield successively smaller values of JNL. The minimum
of JNL identifies za, the desired posterior estimate of z that maxi-
mizes the conditional probability P(z|yo) in (1). Since H is generally
non-linear, the cost function JNL will be non-quadratic, and being
non-convex may possess more than one minimum solution. There-
fore, it is more usual to employ a Gauss–Newton approach to mini-
mize JNL. In this case a sequence of quadratic cost functions are mini-
mized by linearizing the model and the observation operator (Lawless
et al., 2005). This approach developed in numerical weather predic-
tion (NWP) is referred to as the incremental method (Courtier et al.,
1994), and proceeds by assuming that each estimate of zk is a small
departure δz from the prior, so that zk = zb +

∑k−1
l=1 δzl , where k refers

to the kth outer-loop iterate, and δzl are the increments from all pre-
vious outer-loops given by:

δzl = (δx(t0)
T
l , δfT

l , δbT
l )T (5)

where δx(t0)l, δfl and δbl denote the increments in the initial condi-
tions, surface forcing and open boundary conditions. In the calcula-
tions described here, only a single outer-loop was considered, so the
subscript k will be dropped in subsequent expressions.

The state-vector increment δx is a solution of the tangent lin-
earization of the model M in (4) linearized about the prior state xb,
fb and bb, and subject to the increments δf and δb, namely:

δx(ti) = M(ti, t0)δz (6)

where M(ti, t0) is the tangent linear model. The quadratic cost func-
tion J in terms of the control vector increment δz is given by:

J = 1

2
δzT D−1δz + 1

2
(d − Gδz)T R−1(d − Gδz) (7)

which is the weighted sum of the squared increments δz and the
squared departures of the time evolved increments from the inno-
vation vector d = yo − H(xb). The operator G, referred to as the gen-
eralized observation operator, is a convolution in time of M with H,
where H is the tangent linearization of the observation operator H, so
that G represents the tangent linear model sampled at the observa-
tion points. Each δzl in (5) corresponds to the minimization of J in
(7) where G is linearized about zl−1 and is identified by a sequence of
inner-loop iterations. In the case a single outer-loop the final control
vector is given by za = zb + δz.

3.1. The 4D-Var set-up

As noted earlier, two analyses were performed, referred to as
WCRA31 and WCRA14. The entire time interval in each case was di-
vided into 8-day windows that are referred to as assimilation cycles.
Each cycle overlaps the previous cycle and the next cycle by 4 days
as illustrated in Fig. 3. In this way, the prior initial condition for each
cycle is the posterior circulation estimate computed at the mid-point

of the previous cycle. Overlapping cycles were used because each 4D-
Var analysis cycle is equivalent to a Kalman smoother, for which the
expected errors in the posterior analysis are a minimum at the mid-
point of the cycle. Therefore the next cycle starts from the best possi-
ble prior initial state. While errors in the observations collected dur-
ing the first half of a cycle will be correlated with errors in the prior
circulation estimate, no account was taken of these correlations dur-
ing the analyses presented here. The choice of an 8-day assimilation
window was a trade-off between choosing an interval that includes a
significant number of observations, and that does not seriously vio-
late the tangent linear assumption which is invoked during 4D-Var.

During each cycle, the cost function (7) was minimized using an it-
erative minimization algorithm based on a truncated Gauss–Newton
method. Each member of the sequence was computed using 1 outer-
loop and 15 inner-loop iterations, following Broquet et al. (2009) ,
Moore et al. (2011b) and Gürol et al. (2013), who have demonstrated
that this choice of parameters yields adequate convergence of J to-
ward its minimum value.

In the calculations described here, the dual 4D-Var algorithm was
used where the gain matrix is expressed as K = DGT (GDGT + R)−1.
The inverse of the stabilized representer matrix S = (GDGT + R)
(Bennett, 2002) was computed by solving an equivalent system of lin-
ear equations Sw = d using a conjugate gradient (CG) algorithm. Fol-
lowing Gürol et al. (2013), S is preconditioned by R and a Lanczos for-
mulation of CG was used in conjunction with a GDGT inner-product
to yield the Lanczos equivalent of the restricted D-preconditioned
conjugate algorithm of Gratton and Tshimanga (2009). After the last
outer-loop, the final increment was computed according to δz =
DGT w ≡ Kd.

3.2. Observation error and prior error covariances

In the observation error covariance matrix R, it was assumed that
the observation errors are not correlated in time or space in which
case R is diagonal. The prior error covariance matrix, D, is assumed to
be block diagonal so that:

D = diag(Bx, Bf, Bb) (8)

where Bx, Bf and Bb are the full multivariate prior error covariance
matrices of the initial conditions, surface forcing and open boundary
conditions respectively. Here we neglect the influence of model er-
rors during the 4D-Var procedure (the so-called strong constraint),
although some specific types of errors in terrain following coordi-
nate models, such as ROMS, have been documented (e.g. Marchesiello
et al., 2009). Accounting for model error during 4D-Var (the so-called
weak constraint) is currently an active area of research, and will be
the subject of a future study in ROMS. In addition, we assume that
errors in the priors are neither correlated in time or flow-dependent,
which renders D time invariant.

Each block of D in (8) was modeled using the diffusion operator
approach introduced by Derber and Rosati (1989). In ROMS 4D-Var
the approach developed by Weaver and Courtier (2001) was used in
which the initial condition increment δx(t0) is expressed as the sum
of a balanced and unbalanced component of the circulation. The state

Fig. 3. A schematic illustrating the overlapping 8 day data assimilation cycles used in WCRA14 and WCRA31. The starting time for cycle j is denoted as t j
0 and the mid-point as

t j
0 + 4. As indicated, the ending time of 4D-Var analysis cycle j corresponds to the mid-point of cycle j + 1 and the starting time of cycle j + 2. The prior circulation initial condition

for cycle j + 1 is taken as the posterior circulation estimate at the mid-point of cycle j.
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variables of the unbalanced component of δx(t0) are assumed to be
uncorrelated with a covariance "C"T, where C is a univariate corre-
lation matrix, and " is a diagonal matrix of standard deviations.

The initial condition prior error covariance matrix in ROMS, Bx is
factorized as:

Bx = Kb"xC"x
T Kb

T (9)

where Kb is a multivariate balance operator. The implementation of
Kb used in ROMS parallels that of Weaver et al. (2005), Balmaseda
et al. (2008) and Mogensen et al. (2012). All of the analyses described
here were computed with the balance operator disabled. Nonethe-
less, the linearized dynamics embodied in the tangent linear and ad-
joint of ROMS effectively allows the transfer of information between
variables during the assimilation procedure so the lack of Kb during
WCRA14 and WCRA31 is not considered to be detrimental to the re-
sulting 4D-Var analysis. The prior error covariances for the surface
forcing (Bf) and open boundary conditions (Bb) do not include a bal-
ance operator and are simply factorized as "fCf"f

T and "bCb"b
T

respectively.
The standard deviations that comprise the diagonal elements of

"x were chosen to be the climatological variance of a long run of
the model subject only to surface forcing and boundary conditions
(i.e. no data assimilation). However, in the case of salinity, past ex-
perience (Moore et al., 2013) has revealed that the background er-
rors computed using this method are too large, so the standard de-
viations for S were capped at 0.1 psu. In a similar vein, the temporal
variability of the surface forcing fields for the appropriate period was
used to compute the diagonal elements of "f, and the elements of "b
were chosen to be the standard deviations of the open boundary data.
While the climatological variance is a useful proxy for the prior error
variance during the initial 4D-Var cycles, the prior error variance will
naturally decrease over time as the model solution moves closer to
the observations (see Fig. 7). Therefore the use of static climatolog-
ical variances is inappropriate during later cycles, and the variances
should evolve with the circulation. Flow-dependent covariance mod-
eling is very challenging and is currently an active area of research.
While no attempt was made here to refine the error covariance model
parameters, we acknowledge that this places a limitation on the en-
suing circulation analyses. Some of these limitations are explored in
Section 4.2.

Following Weaver and Courtier (2001), the univariate correlation
matrix C is assumed to be separable in the horizontal and vertical,
and the horizontal (vertical) correlation functions are modeled as the
solution of a 2-dimensional (1-dimensional) pseudo-heat diffusion
equation. The horizontal and vertical correlation lengths were held
constant over the entire domain. The decorrelation length scales used
to model the prior error covariances of each control variable are sum-
marized in Table 2.

While no explicit account is taken of temporal correlations in any
of the background errors in the current version of ROMS 4D-Var,
the surface forcing and boundary condition increments were com-
puted daily and interpolated to each intervening model time step.
This procedure effectively imposes a temporal correlation on the er-
rors. The correlation lengths for the prior errors must be specified
a priori, and are typically estimated using semi-variogram techniques

(e.g. Bannerjee et al., 2004; Milliff et al., 2003; Matthews et al., 2011).
However, some level of subjective tuning of the correlation lengths
is also typically required to optimize the performance of the 4D-Var
algorithm. A discussion of the choice of the aforementioned back-
ground error covariance parameters for the CCS in Table 2 can be
found in Broquet et al. (2009); 2011) and Moore et al. (2011b).

3.3. Background quality control

A background quality control check was applied to the observa-
tions as a means of identifying data that cannot be well represented
by the model because of measurement errors or inadequacies in the
model (Hollingsworth et al., 1986; Lorenc and Hammon, 1988), and
such data were rejected from the data assimilation system. Following
Järvinen and Undén (1997) and Andersson and Järvinen (1999), the
elements of the innovation vector d were compared with their ex-
pected error (assuming uncorrelated observation and background er-
rors). Specifically, observations were rejected from the analysis based
on the following criterion:

(yo
i − yb

i )
2

σ 2
b

> α

(
1 + σ 2

o

σ 2
b

)
(10)

where yo
i

is the ith observation and yb
i

the ith element of the vec-
tor H(xb), the background evaluated at the observation locations. The
standard deviations of the observation and background errors at the
observation points are σ o and σ b respectively. While no attempt
was made to propagate prior information about σ b to the appro-
priate observation times using the generalized observation operator
G, Section 4.2 demonstrates that this is not a severe limitation. The
threshold parameter α is dependent of the type of observation, and
can be estimated from the frequency distribution of the elements of
d computed from historical analyses (Andersson and Järvinen, 1999).
Since historical analyses are not available in the present case, we con-
sidered instead the innovations from a randomly chosen year (1999)
during which all observations were assimilated into the model. Based
on the analysis described by Moore et al. (2013), the background qual-
ity control parameter α = 16 was found to be appropriate for the 4D-
Var system described here. In other words, an observation that pro-

duces a misfit greater than 4(σ 2
b

+ σ 2
o )

1
2 is rejected. For this choice

of α, it was found that on average less than 1% of the observations
were rejected during the 4D-Var assimilation. A time series of the to-
tal number of observations rejected from the analysis each month is
shown in Fig. 2. During most months ∼ 0.1% of the observations were
rejected, although there are a few cycles, especially at the beginning
of the analysis period, where the fraction of observations rejected was
significantly higher (although still typically less than 2% ) due to the
spin-up effects of the first few years.

4. Monitoring of 4D-Var

4.1. Minimization

The 4D-Var cost function is a useful indicator of the performance
of the minimization algorithm. Fig. 4 shows time series of the prior

Table 2

A summary of the correlation length scales used for the background errors for the different components of D. For the surface forcing,

(τ x , τ y) denotes the zonal and meridional components of the surface wind stress, QH is the surface heat flux, and QW is the net

surface freshwater flux. In the case of the background errors in the open boundary conditions and initial conditions, the first number

represents the horizontal correlation length while the second number is the vertical correlation length. The state variables listed are

the two horizontal components of velocity (u, v), temperature (T), salinity (S) and sea surface height (ζ ).

Prior

Forcing τ x 300 km τ y 300 km QH 100 km QW 100 km

Open boundaries u 100 km, 30 m v 100 km, 30 m T 100 km, 30 m S 100 km, 30 m ζ 100 km

Initial conditions u 50 km, 30 m v 50 km, 30 m T 50 km, 30 m S 50 km, 30 m ζ 50 km
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Fig. 4. Time series of the initial (blue curve) and final (red curve) cost function (7) for each 4D-Var cycle for (a) WCRA31 and (b) WCRA14. Also shown are the values of the nonlinear

cost function (2) (green crosses). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

and posterior cost function J in (7) for each data assimilation cycle,
for both WCRA31 and WCRA14. The posterior cost function is always
less than the prior cost function, typically by a factor of ∼ 2−5, in-
dicating that the minimization algorithm is behaving correctly. Also
shown in Fig. 4 are the values of the non-linear cost function JNL

from (2), which recall is a measure of the misfit between the non-
linear model and the observations and between the non-linear model
and the prior. During the majority of cycles of WCRA31, JNL ∼ J in-
dicating that the tangent linear assumption of the incremental ap-
proach is generally valid. Discrepancies between JNL and J are gen-
erally larger during WCRA14, and during a few cycles the posterior
JNL is larger than the prior value. This behavior is associated with
non-linearity and may be due to the higher resolution of the forcing
used in WCRA14 which enhances non-linear circulation effects in the
model. Nonetheless, even though the discrepancies between JNL and
J are larger for WCRA14 than for WCRA31, on the whole WCRA14 is
well behaved also.

The time series of J also reflect changes in the observing network
as different instrument platforms come online in accordance with
Fig. 2. For example, in 1981 J increases due to the introduction of
SST observations from the Pathfinder AVHRR satellite, and then again
in 2000 due to the introduction of SST observations from MODIS.

4.2. Innovation statistics

The statistics of the innovation vectors d = yo − H(xb) provide
valuable insight into the performance of the 4D-Var algorithm, and
the choice of the prior error and observation error covariances. Fig. 5
shows the probability density function (PDF) of the innovations from
all cycles from WCRA31 for observations of temperature, salinity and
sea surface height. The means for temperature, salinity and SSH are
−0.06 ◦C, −0.03 psu and −0.003m, respectively, and close to zero.
The tails of the distributions indicate that the innovations sometimes
have quite large values (e.g. in excess of 10 °C for temperature; not

shown). However, these occur very infrequently, and there is no par-
ticular preferred geographical location associated with the values in
the tails (not shown). Also shown in Fig. 5 are normal distributions
with the same mean and standard deviation as the PDFs. Clearly each
PDF departs significantly from a normal distribution which indicates
a violation of the hypotheses that underlie the 4D-Var system since
the innovations should be normally distributed with zero mean and
an error covariance of (R + GDGT ).

The consistency of the prior error and observation error co-
variances prescribed in Section 3.2 with the 4D-Var estimates can
be further examined following Desroziers et al. (2005). As noted
above, the theoretical covariance of the innovations is given by
E{ddT } = (R + GDGT ) where E denotes the expectation operator.
Following Desroziers et al. (2005), the innovation vector can also
be expressed as d = yo − H(xa) + H(xa) − H(xb) = do

a + da
b
, where

do
a = yo − H(xa) and da

b
= H(xa) − H(xb), in which case E{ddT } =

E{d(do
a)

T } + E{d(da
b
)T }. As shown by Desroziers et al. (2005), the the-

oretical expectation E{d(do
a)

T } = R while E{d(da
b
)T } = GDGT . There-

fore, the vectors do
a and da

b
provide information about the consistency

of the statistics of the observation error covariance matrix and the
prior error covariance in observation space (i.e. the representer ma-
trix). As Desroziers et al. (2005) point out, the statistics of E{d(do

a)
T }

and E{d(da
b
)T } will only match those specified a priori for R and GDGT

if the observation error and prior error statistics are chosen correctly.
Unfortunately, a direct measure of GDGT is not readily available

because it involves a mapping of D into observation space by the time
evolving prior circulation. However, an estimate of the trace of GDGT

can be obtained using a randomization method (Andersson et al.,
2000) which can be directly compared with the inner-product dT da

b
.

Specifically, Tr(GDGT ) ≃ 1/M
∑M

i=1 qT
i

qi, where qi = D
1
2 GT vi and vi is

a random vector sampled from a normal distribution with zero mean
and unit standard deviation. The standard deviation of the sequence

of estimates for Tr(GDGT) varies approximately as 1/(2M)
1
2 , so a
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Fig. 5. Probability density functions of the innovations for observations of (a) SSH, (b)

temperature, and (c) salinity. The red line in each case shows the probability density

function of a normal distribution with the same mean and standard deviation.

sample size of M = 50 yields an uncertainty ∼ 10% in the random-
ized estimate of the trace (Weaver and Courtier, 2001). Because the
evaluation of each vector qi requires an integration of the tangent lin-
ear and adjoint of ROMS over the length of each assimilation cycle, it
is not feasible to compute an estimate of Tr(GDGT) for each assimi-
lation cycle. However, a reduced rank approximation of the precon-
ditioned stabilized representer matrix Tr(R−1GDGT + I) can be com-
puted following Gürol et al. (2013) who show that (R−1GDGT + I) ≃
VmTVT

mGDGT where Vm is the matrix of m Lanczos vectors (m =
15 is the number of inner-loops) and T is the m × m tridiago-
nal matrix of Lanczos coefficients. In this case Tr(R−1GDGT + I) ≃
Tr(VmTVT

mGDGT ) = Tr(TVT
mGDGT Vm) = Tr(T), where the last equal-

ity is a consequence of the orthonormal property of the Lanczos vec-
tors, VT

mGDGT Vm = I. While Tr(T) will be a significant underestimate
of Tr(R−1GDGT + I), they are highly correlated (r = 0.92) as shown in
Fig. 6a which compares randomized trace estimates of Tr(R−1GDGT +
I) (using M = 50) with Tr(T) for a selection of 4D-Var cycles during
1991 (prior to AVISO) and 2004 (post AVISO, MODIS and AMSR-E). The
best least-squares straightline fit is given by s = 9.60Tr(T) + 4.83 ×
104 which can be used to estimate s = Tr(R−1GDGT + I) for all cycles.
Fig. 6b shows time series of s and dT R−1d. If the a priori choice of pa-
rameters for D and R are correct, then E{dT R−1d} = Tr(R−1GDGT + I)
and the two time series would be identical. Fig. 6b shows that this
is clearly not the case, which is a further indication that the prior
choices for D and R are not correct.

Desroziers et al. (2005) also demonstrate how the contributions
of individual observations, observation types, or observing platforms

to the aforementioned statistics can also be diagnosed by consider-
ing appropriate subsets of the dot-products for dTd, dT do

a and dT da
b
.

The corresponding contributions of individual or subsets of obser-
vations to GDGT could also be estimated using the randomization
method described above, although this would be very costly. Instead,
we have used R−1FDFT as an estimate for R−1GDGT where F ignores
the influence of the ocean dynamics and simply maps D to the obser-
vation points in space each time an observation is available. Fig. 6c
shows that R−1FDFT and R−1GDGT are highly correlated (r = 0.98)
for the same sample of randomized trace estimates shown in Fig. 6a,
although R−1FDFT generally underestimates R−1GDGT by ∼ 20%. As-
suming that this correlation holds for all cycles and for the sub-traces
of GDGT associated with different observation types, we can use the
sub-traces of FDFT as an approximate surrogate for those of GDGT as
shown in Figs. 6d–f for temperature, salinity and sea surface height
observations. Even allowing for the underestimate of Tr{R−1FDFT }
compared to Tr{R−1GDGT }, Figs. 6d and f suggest that the prior er-
ror variances chosen a priori for temperature and sea surface dis-
placement are generally too high. Conversely, the a priori choices of
error variance for salinity are too low. However, it must be remem-
bered that dT da

b
does not represent the sum of the true values of the

prior error in observation space since d and da
b

depend on the a priori
choice of D and R. Thus any attempts to modify D and R will result
in new estimates of d and da

b
as well. Fig. 6e shows that for salinity,

dT da
b

is negative during some cycles which further highlights the sub-
optimal nature of the a priori choices of the prior errors for this vari-
able.1 An interesting feature of Figs. 6d and e is the overall general
decline in dT da

b
as the model fit to the observations of temperature

and salinity improves over time.
Figs. 6g–i show time series of the sub-trace of R and the cor-

responding contributions to dT do
a for observations of temperature,

salinity and sea surface height. For temperature and salinity the a
priori combination of measurement error and error of representative-
ness is generally too low, while for sea surface displacement it is too
high.

5. The influence of data assimilation on the circulation

To examine the efficacy of the fit of the model to the observations,
in this section the impact of 4D-Var on various aspects of the circu-
lation is examined, namely: Sea Surface Temperature (SST), Sea Sur-
face Salinity (SSS), Sea Surface Height (SSH), and Eddy Kinetic En-
ergy (EKE). A forward run of the model subject to the prior forcing
and prior open boundary conditions and without data assimilation
is used as a benchmark. To gauge geographical variations in the im-
pact of 4D-Var on the system, the model domain was subdivided into
the four regions illustrated in Fig. 1. The four regions are labeled R1
through R4, and characterize different circulation environments. Re-
gions R1-R3 delineate the different coastal wind regimes identified
by Dorman and Winant (1995). R1 spans the Oregon, Washington
and Northern California coastal region where the continental shelf
is typically narrow and where there is a pronounced seasonal rever-
sal in the alongshore winds leading to upwelling in the summer and
downwelling in winter. R2 spans the central California coast where
the alongshore winds are generally upwelling favorable year round.
Furthermore, R1 and R2 encompass the main features of the CCS sur-
face circulation, such as the equatorward California Current ∼ 500 km
offshore and the near-shore coastal jet, as well as the transition zone
that separates the circulation over the shelf from that in the deep
ocean (Marchesiello et al., 2003). R3 encompasses the Southern Cal-
ifornia Bight typically characterized by less seasonal upwelling and
by a cyclonic circulation for part of the year (Di Lorenzo, 2003), while

1 While ddT = do
adT + da

b
dT is by necessity a positive-definite matrix, there is no

such requirement for do
adT and da

b
dT , except when R and GDGT are specified correctly.
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Fig. 6. (a) A scatter plot of Tr{T} vs randomized estimates of Tr{R−1GDGT } for a selection of 4D-Var cycles during 1991 and 2000. The best least-squares straight line fit is indicated

by the dashed line. (b) Time series from WCRA31 of s (red line) and dT R−1d (black line). (c) A scatter plot of Tr{R−1FDFT } vs Tr{R−1GDGT }. The 1-to-1 line is also shown. Time series

from WCRA31 of Tr{FDFT} (red line) and dT da
b

(black line) for observations of (d) temperature, (e) salinity and (f) SSH. Time series from WCRA31 of Tr{R} (red line) and dT do
a (black

line) for observations of (g) temperature, (h) salinity and (i) SSH. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this

article.)

R4 encompasses the deep open ocean environment. In each of the
four regions the spatial average of SST, SSS, SSH and EKE were com-
puted during each data assimilation cycle for the time varying prior,
posterior, and forward run circulation estimates. We will consider
first the differences between the 4D-Var posterior and prior circu-
lation estimates for WCRA31, then examine the differences between
the WCRA31 4D-Var posterior and forward solutions. Finally the im-
pact of 4D-Var on the EKE and eddy statistics is quantified. In general,
the mean adjustments to the open boundary conditions by 4D-Var
are small for all variables, therefore the open boundary increments
will not be considered further.

5.1. Posterior minus prior differences

Fig. 7 shows the mean and standard deviation of the initial con-
dition increments of SST and SSS for all assimilation cycles during
WCRA31. Since the posterior and prior estimates are time evolving
during 4D-Var, the differences between the time evolving posterior
and prior circulation estimates in the four regions of Fig. 1 are sum-
marized in Table 3 for WCRA31. The mean difference between the
time evolving posterior and the prior SST is small and slightly neg-
ative in all regions indicating that the posterior is O(0.1 °C) cooler
than the prior (Table 3). Fig. 7a shows that it generally takes the
form of a cold bias which is most pronounced equatorward of Cape
Mendocino. The standard deviation of the time evolving differences
is approximately 0.25 °C over the whole domain, although near the

coast it is larger (Fig. 7c). There is an apparent change in the charac-
ter of the SST posterior minus prior differences around 2002 when
the prior atmospheric forcing changes to ERA Interim. This is illus-
trated in Fig. 8a for region R2. An erroneous 6 h shift in the ERA
net radiation flux was inadvertently introduced at this time. How-
ever, the 4D-Var analysis procedure was able to compensate for this
inconsistency by adjusting the surface heat fluxes, which recall are
part of the control vector, leading to a minimal. overall impact on the
analyses.

The impact of the AVISO SSH observations on the 4D-Var esti-
mates is very obvious in the time evolving posterior minus prior time
series as shown in Fig. 8b for region R2. Table 3 shows that the mean
difference is close to zero, with the posterior mean sea-level on av-
erage O(0.1 cm) lower than the prior. The standard deviation of the
differences over the entire 30 yr period is approx 1.5 cm, although
the differences after 1992 (when the AVISO product came online) are
significantly larger than this and in the range ± 5 cm (Fig. 8b).

The mean time evolving posterior minus prior SSS differences are
small and indicate that the posterior is slightly fresher, on average,
than the prior, and the standard deviation is O(0.01) or less over the
entire domain. The spatial structure of the mean initial condition in-
crements in Fig. 7b confirms this, and shows that the posterior is typ-
ically fresher than the prior near the coast. In region R2, the correc-
tions made by 4D-Var to the time evolving prior are generally smaller
during the last 20 years of the analysis as shown in Fig. 8c. Fig. 7d indi-
cates that the largest increments in salinity are confined to nearshore
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Fig. 7. The mean increments for (a) SST and (b) SSS computed from all 4D-Var analysis cycles of WCRA31. The standard deviations of the increments are shown in (c) for SST and

(d) for SSS.

Table 3

Mean and standard deviation of the posterior minus prior fields for WCRA31.

Variable R1 (mean, std) R2 (mean, std) R3 (mean, std) R4 (mean, std)

'SST (°C) −6 × 10 − 2, 0.24 −7 × 10−2, 0.24 −6 × 10−3, 0.25 −8 × 10−2, 0.21

'SSH (m) −2 × 10−3, 1.6 × 10−2 −2 × 10−3, 1.6 × 10−2 −1 × 10−3, 1.5 × 10−2 −1 × 10−3, 1.6 × 10−2

'SSS −3 × 10−3, 1.1 × 10−2 −4 × 10−3, 1.2 × 10−2 −4 × 10−3, 9 × 10−3 −2 × 10−3, 4 × 10−3

'KE (TJoules) 9.2, 23 1.5, 22 3.4, 17 −37, 110

within the upwelling/downwelling regions poleward of Point
Conception.

The differences between the posterior and prior EKE are generally
more pronounced during the latter half of the analysis period in re-
gions R1 and R4, as illustrated in Fig. 8d for region R1. Along the coast
(regions R1–R3), Table 3 shows that the posterior is generally more
energetic than the prior, while off-shore in deep water (region R4)
the opposite is true.

5.2. Posterior minus forward model differences

The forward model solution is generally warmer than the poste-
rior in all regions, as illustrated in Fig. 9a for region R2. The poste-
rior SST is representative of the observed SST since SST observations
are assimilated into the model. The seasonal cycle is very obvious in
Fig. 9a, and low frequency variability is also apparent in the time se-
ries and will be discussed in more detail in Part II.

Prior to the introduction of AVISO in 1992, the average posterior
and forward SSH fields are very similar as shown in Fig. 9b for region
R1. The differences, however, become larger after the introduction of
AVISO SSH observations into the assimilation system, and the am-
plitude variations of the posterior SSH estimates are generally lower

than those in the forward model. The low frequency variations in SSH
will be discussed in Part II.

The posterior estimates are on average fresher than those of the
forward model as shown in Fig. 9c for region R4. The number of salin-
ity observations that are assimilated into the model is relatively small
compared to the number of temperature measurements (cf Fig. 2),
so the lower salinity in the posterior is being driven mainly by ad-
justments to freshwater fluxes made by 4D-Var. The difference be-
tween the net freshwater flux of the posterior and the forward run
(not shown) indicates that except for a few areas along the coast, the
posterior fluxes are everywhere smaller than those in the forward run
(i.e. less posterior evaporation in the subtropics and more posterior
precipitation at middle latitudes).

The near-surface EKE time series reveal that the EKE of the pos-
terior is significantly higher than that of the forward model, indicat-
ing that the posterior is more energetic as a result of data assimila-
tion. The seasonal amplitude of the EKE variations of the posterior
is also significantly larger than that of the forward model as illus-
trated in Fig. 9d for region R1. This is consistent with the findings of
Marchesiello et al. (2003) who examined in detail the circulation of
the CCS in forward runs of ROMS with different horizontal resolu-
tions. They found that a minimum resolution of approximately 1/20°
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Fig. 8. Time series of the posterior minus prior fields of WCRA31 averaged over the different regions in Fig. 1 for: (a) R1 SST, (b) R2 SSH, (c) R2 SSS and (d) R1 EKE.

Fig. 9. Time series of the WCRA31 posterior (red) and forward (blue) fields averaged over the different regions in Fig. 1 for: (a) R2 SST, (b) R1 SSH, (c) R4 SSS and (d) R1 EKE. (For

interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 10. The mean posterior zonal and meridional surface wind stress averaged over all assimilation cycles for (a,b) WCRA31, and (c,d) WCRA14. Also shown are the differences

between the posterior and prior zonal and meridional surface wind stress components for (e,f) WCRA31, and (g,h) WCRA14.

is required to reliably reproduce the observed EKE and SSH variability.
Much of the EKE in their solutions is non-seasonal and geostrophic,
and model solutions lower than 1/20° tend to be less energetic. In
order to recover the sub-mesoscale variability, much higher resolu-
tions are required (Capet et al., 2008) but this is not the focus of the
present study. In the case considered here, however, 4D-Var is able
to re-energize the circulation by reconstructing the ocean eddy field
from the observations. The impact of 4D-Var on this aspect of the cir-
culation is explored further in Section 5.4.

5.3. Posterior minus prior surface flux adjustments

The mean posterior zonal and meridional surface wind stress
components from the two sequences of analyses are shown in
Figs. 10a–d, and in general the two are very similar. Figs. 10e–h show
the adjustments that are made to the surface wind stress by 4D-
Var (i.e. the difference between the posterior and prior estimates)
averaged over all assimilation cycles for WCRA31 and WCRA14. By
and large, the patterns of adjustment made to the zonal and merid-
ional components are qualitatively similar during the two sequences
of analyses. For example, in both cases the equatorward posterior
alongshore wind stress is weaker than in the prior. This is consistent
with the findings of Broquet et al. (2011) using the same model with
COAMPS forcing but for a shorter time interval (2002–2004) and dif-
ferent satellite observations. Broquet et al. (2011) concluded that the
tendency of 4D-Var to weaken the alongshore upwelling favorable
winds is most likely associated with systematic model error. Recall
that in both WCRA31 and WCRA14, 4D-Var was applied subject to
the strong constraint. In general, the meridional wind stress differ-
ences between the posterior and the prior are largest during WCRA14
(Fig. 10h), with 4D-Var making the largest corrections near 128°W,
38°N, a feature also present during WCRA31 but weaker (Fig. 10f).
A region of positive zonal wind stress adjustments between 35°N
and 45°N within 300–400 km of the coast is present in both se-
quences of analyses (Figs. 10e and 10g) with largest values near the
coast between Cape Mendocino and San Francisco Bay, although it
covers a geographically broader area in WCRA31 extending all the
way to the southern boundary. In general, the adjustments made to

the surface wind stress by the 4D-Var procedure are ∼ 5−10% of the
mean.

The mean posterior total surface heat fluxes for WCRA31 and
WCRA14 are shown in Fig. 11 averaged over all cycles. Near the coast
the mean heat fluxes are similar, however offshore the fluxes from
WCRA14 are significantly lower than in WCRA31. This is also reflected
in the posterior minus prior heat flux differences. Near the coast and
in the upwelling region, 4D-Var makes similar adjustments to the
total heat flux in both sequences of analyses. However, offshore the
4D-Var heat flux corrections are predominantly negative (positive) in
WCRA31 (WCRA14). Near the coast the 4D-Var flux adjustments are
10% of the mean, while offshore the adjustments are the same order
of magnitude as the mean.

The root mean square (rms) wind stress and heat flux differences
between the posterior and the prior averaged over the whole model
domain for all years are summarized in Table 4. While the true winds
and heat fluxes are not known, Table 4 compares the rms of the 4D-
Var surface flux adjustments to the rms difference between various
other commonly used ocean forcing products for this region, includ-
ing an estimate of surface wind stress based on QuikScat. Table 4
shows that the rms of the 4D-Var adjustments in both WCRA31 and
WCRA14 are generally small compared to the rms differences be-
tween different atmospheric products, indicating that the 4D-Var ad-
justments are not unreasonable.

The mean posterior total surface freshwater fluxes (evaporation
minus precipitation) for the two sequences of analyses are shown in
Fig. 12, along with the posterior minus prior flux differences, aver-
aged over all assimilation cycles in each case. In general the mean
freshwater fluxes and 4D-Var flux adjustments are qualitatively and
quantitatively similar, although the adjustments in WCRA14 contain
more small scale features than those in WCRA31 in the central part
of the domain, which is associated with the higher resolution of the
freshwater flux prior used in WCRA14 from the inner-most grid of
the COAMPS nested configuration (Doyle et al., 2009). The freshwa-
ter flux adjustments made by 4D-Var are ∼ 5−10% of the mean. Es-
timates of the rms differences in surface freshwater fluxes are not
shown in Table 4 since they are highly uncertain regardless of the
source of the estimate.
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Fig. 11. The mean posterior total surface heat flux averaged over all assimilation cycles for (a) WCRA31, and (c) WCRA14. Also shown are the differences between the posterior and

prior surface heat flux averaged over all assimilation cycles for (b) WCRA31, and (d) WCRA14.

Table 4

The root mean square (rms) difference between surface wind stress in N˜m−2 (surface heat flux in W˜m−2) between

the data sets indicated. The numbers highlighted in bold correspond to the rms differences between the 4D-Var

posterior and prior estimates. CCMP/ERA = the combination of CCMP and ERA products used in WCRA31; WCRA31 =
WCRA31 posterior estimates; WCRA14 = WCRA14 posterior estimates; NARR = North American Regional Reanalysis

from NCEP; CaRD10 = California Reanalysis Downscaling to 10 km from Scripps Institute of Oceanography; Qscat =
QuikSCAT wind product from NOAA Coastwatch.

Model WCRA31 COAMPS WCRA14 NARR CaRD10 Qscat

CCMP/ERA 0.038 (40) 0.091 (147) 0.117 (148) 0.273 (121) 0.061

WCRA31 0.098 (151) 0.070

COAMPS 0.037 (73) 0.057 (67) 0.262 (78) 0.059

WCRA14 0.067

NARR 0.239 (62) 0.059

CaRD10 0.248

5.4. EKE and a census of eddies

Eddies are an important component of the circulation in the CCS
since they form a bridge between the shelf and deep ocean, and they
are known to be important for primary production (Falkowski et al.,
1991; McGillicuddy et al., 1998). As discussed in Sections 5.1 and 5.2,
data assimilation increases the EKE of the 4D-Var circulation esti-
mates over much of the model domain. This is further illustrated in
Fig. 13 which shows the difference between the 30 year mean sur-
face eddy kinetic energy (EKE) computed from WCRA31 and the for-
ward model without data assimilation. Fig. 13 shows that there is a
region of elevated EKE offshore and downstream of Cape Mendocino
in the same general area as that identified in satellite altimeter ob-
servations (Kelly et al., 1998; Strub and James, 2000; Stegmann and
Schwing, 2007). This suggests that 4D-Var is able to recover the sur-
face EKE signature from the satellite observations, despite the rela-

tively low model resolution. EKE is elevated in the same region in
WCRA14 compared to a forward model run forced with COAMPS (not
shown).

It is instructive to compare the model surface EKE with esti-
mates derived from observations. With this in mind, the space-
time average surface EKE was computed in the region 36°N-40°N,
124°W-130°W, indicated in Fig. 13, which encompasses the region of
maximum EKE in both the model and observational estimates. Two
observational estimates were computed: one from AVISO SSH based
on surface geostrophic velocities (1992–2010), and a second from
surface drifter observations (1987–2014). The surface drifter obser-
vations from www.aoml.noaa.gov/envids were sorted in to 0.5° ×
0.5° bins, and processed as described by Veneziani et al. (2009).
The mean surface EKE in WCRA31 (WCRA14) is 95 ± 35 cm2s−2

(96 ± 34 cm2s−2) compared to 85 ± 23 cm2s−2 (86 ± 27 cm2s−2) in
the forward model without data assimilation. The mean EKE
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Fig. 12. The mean posterior total surface freshwater flux (mm day−1) averaged over all assimilation cycles for (a) WCRA31, and (c) WCRA14. A positive flux is out of the ocean (i.e.

excess evaporation over precipitation). Also shown are the differences between the posterior and prior surface freshwater flux for (b) WCRA31, and (d) WCRA14.

Fig. 13. The time mean surface EKE difference between WCRA31 and the forward

model run without data assimilation (m2 s−2). The region indicated by the black box is

referred to in Section 5.4.

estimated from AVISO is 113 ± 47 cm2s−2 while that from the drifters
is 235 ± 178 cm2s−2. 4D-Var increases the surface EKE by ∼ 10% com-
pared to the forward model without data assimilation, although both
analyses are lower than the AVISO estimates, and less than half that
from drifters. However, the model EKE signature in the 4D-Var es-
timates extends well below the surface indicating that the vertical
structure of the eddies is also recovered. For example, data assimila-
tion increases the depth averaged EKE over the upper 500 m by ∼ 50%

compared to the forward model, indicating that 4D-Var is effective at
propagating or projecting energy down through the water column.

To further illustrate, Fig. 14 shows Hovmoller diagrams of the
difference in depth averaged EKE over the upper 500 m between
WCRA31 and the forward model (no data assimilation), and aver-
aged between Cape Blanco (43°N) and Point Conception (34°N) as a
function of offshore distance. Adjacent to the coast, depth averaged
EKE in WCRA31 and the forward model are similar (recall that SSH
observations are not assimilated within 50 km of the coast), while
50−500 km offshore the depth averaged EKE of WCRA31 is elevated
compared to the forward model. Elevated westward propagation of
the EKE is apparent in WCRA31 in agreement with observation (Kelly
et al., 1998; Strub and James, 2000; Stegmann and Schwing, 2007),
and consistent with the generaly accepted idea of eddy formation via
baroclinic instability within the CCS and westward propagation of ed-
dies as Rossby waves (Barth, 1994; Marchesiello et al., 2003). Fig. 14
suggests that the 4D-Var analyses are able to more successfully cap-
ture this process.

To shed more light on the nature of the elevated EKE in the 4D-
Var analyses, individual eddies present in the circulation estimates
were identified using the Okubo–Weiss parameter W (Weiss, 1991)
which is defined as W = (ux − vy)2 + (vx + uy)2 − (vx − uy)2, where
subscripts denote partial derivatives with respect to the indicated in-
dependent variable. As discussed by Chelton et al. (2007), eddy cores
are characterized by regions where W < 0. The Okubo–Weiss parame-
ter was computed here using the 8-day average velocity components
corresponding to each assimilation cycle ensuring that the circula-
tions are in dynamic balance. Each field of W was smoothed using
eight applications of a 2nd order Shapiro filter, and values of W within
three grid points of the coast were disgarded to minimize the possi-
bility of miss-identifying eddy cores associated with the computation

Please cite this article as: E. Neveu et al., An historical analysis of the California Current circulation using ROMS 4D-Var. Part I: System config-

uration and diagnostics, Ocean Modelling (2016), http://dx.doi.org/10.1016/j.ocemod.2015.11.012



E. Neveu et al. / Ocean Modelling 000 (2016) 1–19 15

ARTICLE IN PRESS
JID: OCEMOD [m5G;January 8, 2016;8:23]

Fig. 14. The difference in depth avereaged EKE over the upper 500 m between WCRA31 and the forward model run without data assimilation and averaged between Point

Conception (34°N) and Cape Blanco (43°N) as a function of offshore distance from the coast (m2 s−2).

of derivatives on the ROMS staggered grid near land-sea boundaries.
In addition, W was not computed in the sponge layers adjacent to
each open boundary. Eddy cores were identified as regions where
W was less than twice the mean of all negative values of W over the
model domain, which has the effect of isolating the most intense re-
gions of W < 0 which are most likely associated with eddy cores, al-
though false alarms are possible (Chaigneau et al., 2009; Kurian et al.,
2011; Davis and Di Lorenzo, 2015). The eddies identified in this way
were then counted, and the number of eddies found during each 8-
day cycle recorded.

Fig. 15a shows a time series of the total number of eddies iden-
tified in both WCRA31 and the forward model without data as-
similation. Fig. 15a shows that on average there are ∼ 50% more
eddies present in WCRA31 than in the forward model, consistent
with the elevated levels EKE in the former. In both cases, the num-
ber of eddies varies considerably from year to year (in agreement
with other studies, such as Stegmann and Schwing, 2007; Davis and
Di Lorenzo, 2015), and exhibits a pronounced seasonal cycle, with
the maximum eddy count occurring during spring at the start of
the upwelling season. Similar results were obtained for WCRA14 (not
shown). In WCRA31, Fig. 15a shows that the difference in the num-
ber of eddies is particularly pronounced during the period when
AVISO SSH observations were assimilated into the model beginning in
1992.

The influence of 4D-Var on energizing the circulation via eddy
generation was further illustrated by performing a second run of the
forward model initialized from the 4D-Var analysis on 17 Feb. 1995,
then integrated forward in time without data assimilation. A time se-
ries of the total eddy count for this case is also shown in Fig. 15a.
Following the abrupt end of data assimilation, the number of eddies
decreases within 40–60 days to the same level as the original forward

model run, showing that the spin-down of the eddies in the model is
quite rapid if they are not maintained by 4D-Var. A time series of the
EKE from the same spin-down calculation displays a similar behavior
(not shown).

The total eddy counts in regions R1 and R4 exhibit a pronounced
seasonal cycle which is less well defined in R2 and R3. A further anal-
ysis of the vorticity field associated with each eddy core reveals re-
gional variations in the number of cyclonic and anticyclonic eddies. In
regions R1, R3 and R4, there are generally more cyclonic eddies than
anticyclonic eddies (not shown), particularly in the forward model, in
general agreement with observations (Stegmann and Schwing, 2007).

The eddies can be further classified as geostrophic or ageostr-
ophic. Geostrophic eddies were identified using SSH ζ to compute the
geostrophic approximation of W = 4(ug

2
x + vgxugy) following Chelton

et al. (2007), where ug = −(g/ f )ζy and vg = (g/ f )ζx. Eddies with a
significant ageostrophic component were identified as those which
have no discernable geostrophic signature. These are typically ed-
dies that have a weak geostrophic core which falls below the detec-
tion threshold for the spatially smoothed W, but surrounded by an
ageostrophic halo. The nature of the dynamical balance within the
halo region is not known at this time, and is beyond the scope of
this study, but could include advection of momentum (e.g. Penven
et al., 2014) and wind influences (e.g. Sudre et al., 2013). Fig. 15b
shows time series of the ratio of the number ageostrophic eddies to
the number of geostrophic eddies identified in WCRA31 and the for-
ward model, and indicates that in WCRA31 ∼ 40% of the eddies are
dominated by ageostrophic circulations compared to ∼ 28% in the for-
ward model. Similar ratios are present in WCRA14 (not shown). Kelly
et al. (1998) argued that the level of EKE based on SSH observations
may be lower than that derived from drifter data because of the con-
tribution of ageostrophic circulations which are undetectable in the
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Fig. 15. (a) Time series of the three month running mean of the total number of eddies in WCRA31 (red) and the forward model without data assimilation (blue). The number of

eddies from a run of the model where data assimilation ceases on 17 Feb. 1995 is also shown (green). (b) Times series of the ratio of the three month running mean of the number of

ageostrophic eddies to geostrophic eddies in WCRA31 (red) and the forward run (blue). (c) Probability density functions (PDFs) of eddy diameter in WCRA31 (red) and the forward

model (blue). (d) The PDF for ageostrophic eddies (red) and geostrophic eddies (blue) in WCRA31. (For interpretation of the references to color in this figure legend, the reader is

referred to the web version of this article.)

altimeter observations, an idea confirmed in other regions (e.g.
Penven et al., 2014). In the forward runs, 73% of the eddies with sig-
nificant ageostrophic circulations are located near the coast in re-
gions R1–R3 compared to 56% in the 4D-Var analyses. This is consis-
tent with the elevated ageostrophic EKE documented by Marchesiello
et al. (2003) near shore in other non-data assimilative configurations
of ROMS for the CCS.

Fig. 15 c shows the probability density function (PDF) of the di-
ameter of the eddy cores based on estimates of the circumference
of each eddy. This calculation assumes that each eddy is circular,
which of course is not the case, but nevertheless the equivalent eddy
core diameter serves as a useful reference. Fig. 15c shows that the
mode of the eddy core diameter is ∼ 60 km in agreement with the
study by Kurian et al. (2011), although on the whole WCRA31 (and
WCRA14, not shown) tends to favor somewhat smaller eddy cores
than the forward model. Fig. 15d shows the PDF of eddy core diam-
eter for geostrophic and ageostrophic eddies for WCRA31, and that
from the forward run is qualitatively similar (not shown). The mode
of the eddy core diameter for both the geostrophic and ageostrophic
eddies is also ∼ 60 km. However, in the case of the geostrophic ed-
dies, the PDF is also clearly elevated at scales of the first baroclinic
mode Rossby radius of deformation which is ∼ 20 − 35 km in the CCS
(Chelton et al., 1998). It is important to recall that the fields of W were
filtered prior to identifying the eddies. This smoothing removes any
features in W with a scale of twice the model grid spacing. In addition,
the diameters in Fig. 15d relate only the eddy cores, meaning that the
eddies themselves will have diameters larger than this. Therefore, the

elevated probability density of the geostrophic eddies at diameters
∼ 20 − 35 km compared to the ageostrophic eddies is a real effect.
The PDF of eddy diameter for WCRA14 is similar to that for WCRA31.

The dominant eddy diameters identified here are somewhat
smaller than the mean eddy size ∼ 165 km identified in SSH obser-
vations by Stegmann and Schwing (2007). However, their study was
limited to circular, geostrophic eddies on a 1/3° grid with life spans
longer than 35 days, so their analysis will exclude smaller short-lived
eddies as well as eddies with significant ageostrophic circulations.

5.5. Departures from the observations

To explore the veracity of the subsurface circulation, the 4D-Var
posterior circulation estimates were compared to vertical tempera-
ture and salinity profiles collected as part of the California Coopera-
tive Oceanic Fisheries Investigation (CalCOFI). The data used here are
from the period March 1990 to July 2007. There are typically cruises
four times a year, mainly off southern California as shown in Fig. 1.
It is traditional to compare posterior estimates to independent ob-
servations that have not been assimilated into the model. However,
some of the CalCOFI cruise data used here are included in the EN3
data set, so the 4D-Var and CalCOFI data set comparisons are not truly
independent. However, Schroeder et al. (2014) present a comparison
of the WCRA31 analyses with independent observations of the CCS
off the central California coast collected at a mooring near Monterey
Bay and by the NOAA National Marine Fisheries Service, and conclude
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Fig. 16. Vertical profiles of the comparison between the model and the CalCOFI observations for (a) WCRA31 and (b) the forward model run for the period Mar. 1990–Jul. 2007. The

statistics for temperature (salinity) are shown in the left (right) of each panel. The black line is the mean of the differences between the model (M) and the observational data (D).

The standard deviation of the difference M-D is shown in blue. The standard deviations of the model and the data are shown in red and green, respectively.

that the 4D-Var analyses yield reliable estimates of temperature and
salinity despite the presence of some overall biases.

A comparison was made at each CalCOFI station between the in
situ observations and the corresponding profiles of salinity and po-
tential temperature from the 4D-Var posterior circulation estimates.
Fig. 16a summarizes the statistics of the posterior minus observation
differences for temperature and salinity averaged over all of the Cal-
COFI survey locations for the period Jan. 1990–July 2007 for WCRA31.
The results for WCRA14 are similar and are not shown. The corre-
sponding analysis for the forward run without data assimilation is
summarized in Fig. 16b.

Fig. 16b shows that in the absence of data assimilation, the model
exhibits a warm temperature bias ∼ 0.7 °C above 150 m and a cold
bias ∼ −0.2 ◦C between 150 and 450 m. Following data assimilation,
the bias is close to zero in the upper 50 m, and the warm bias between
50 and 150 m has been reduced to ∼ 0.2 °C. Below 150 m 4D-Var has
reduced the cold bias slightly. The forward model has a positive salin-
ity bias between ∼ 50 and 150 m but matches the mean of the obser-
vations very well below this (Fig. 16b). In the upper 50 m or so of the
water column the forward model salinity agrees quite well with the
observations. Data assimilation substantially reduces the subsurface
positive salinity bias (Fig. 16a), although it introduces a negative bias
in the upper 75 m of the water column.

In terms of the variability, Fig. 16b reveals that the forward
model under-estimates the observed subsurface temperature vari-
ability above ∼ 175 m, while the agreement between the 4D-Var es-
timates and the observations in Fig. 16a is generally very good. Both
the forward model and the 4D-Var circulation estimates significantly
over estimate the variability in salinity in the upper 125 m.

6. Summary and discussion

Two sequences of historical analyses of the California Current cir-
culation have been computed using ROMS 4D-Var. One sequence
spans the period 1980–2010 while the second sequence spans the
shorter period 1999–2012. The two sequences differ only in the prior
ocean surface forcing fields used during the 4D-Var analysis cycles.
On the whole, the 4D-Var system performs well as evidenced by the
significant decrease in the cost function during each data assimilation
cycle. The tangent linear assumption employed by 4D-Var is gener-
ally valid throughout the two periods considered as indicated by the
generally good agreement between J and JNL although nonlinear-
ity seems to play more of a role during WCRA14, perhaps due to the

higher resolution surface forcing. Further evidence for the well be-
haved nature of the 4D-Var cycles is the very small percentage of
observations that were rejected by the background quality control
check. An examination of the statistics of the innovations reveals that
there is scope for improvement in the a priori choice of parameters
for the prior error and observation error covariance matrices. This
is not unexpected since the correct specification of a time evolving
multivariate covariance matrix is a tall order. Nonetheless, the inno-
vation statistics point to ways in which specification of the covariance
model variances can be improved by tuning the error variances fol-
lowing the iterative process outlined in Desroziers et al. (2005) and
Desroziers and Ivanov (2001).

Data assimilation has a significant influence on the time evolving
circulation as evidenced by the differences between the posterior es-
timates and those from a model without data assimilation, as well as
the differences between the prior and posterior fields. One notable
characteristic of the posterior circulation estimates is that they are
more energetic than the model run without data assimilation, as evi-
denced by the EKE.

Further investigation reveals that both sequences of analyses
more faithfully capture the region of elevated EKE observed offshore
and downstream of Cape Mendocino, with offshore propagation of
EKE by eddies consistent with baroclinic instability of the California
Current and Rossby wave propagation. However, both analyses con-
sistently under estimate the level of EKE based on observational es-
timates, most likely because of the relatively low model resolution
used here. Nevertheless, 4D-Var energizes the circulation, and there
are generally more eddies present during the 4D-Var analyses than
in runs of the model without data assimilation. However, the number
of eddies decreases within a month or so if data assimilation is not
maintained. In addition, the 4D-Var analyses capture a higher frac-
tion of eddies with a significant ageostrophic component, often in the
form of an ageostrophic halo surrounding a very weak geostrophic
core. The nature of the ageostrophic circulations and halos, with di-
ameters that peak near 60 km, is unclear and deserves further atten-
tion, athough they are unlikely to be an artifact of 4D-Var since they
are present in the forward model runs also. The PDF of eddy core di-
ameter during 4D-Var indicates that geostrophic eddy energy has a
tendency to accumulate at scales of the first baroclinic radius of de-
formation. As noted earlier, the elevated levels of EKE and number
of eddies in the 4D-Var analyses compared to forward model runs
is likely to have important implications for primary productivity in
ecosystem models driven by the analysis circulation fields.
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Data assimilation was found to significantly improve some aspects
of the subsurface circulation when compared to a subset of the Cal-
COFI hydrographic observations. In particular the temperature and
salinity biases were reduced, and the 4D-Var analyses more faithfully
capture the subsurface temperature variability. However, data assim-
ilation is unable to correct for the over estimation of upper ocean
salinity variance in the forward model.

The version of ROMS 4D-Var that was used for the calculations
described here has a number of shortcomings and limitations which
are likely to impact the circulation estimates to some degree. How-
ever, the latest release of the 4D-Var code has more utility and a sec-
ond sequence of calculations are planned using the improved system.
Specific changes and improvements to the calculations will include:
(1) inhomogeneous covariance models that allow the a priori corre-
lation lengths scales to vary spatially across the domain. This is ex-
pected to have a significant impact near the coast where the covari-
ance functions are likely to be particularly inhomogeneous; (2) the
use of temporal correlation functions for the prior error. It is antici-
pated that this will allow a more efficient use of along-track satellite
altimeter observations in place of the gridded products that are cur-
rently used; and (3) the use of a multivariate balance operator which
includes an improved method for estimating the depth of the sur-
face mixed layer where the balancing of temperature and salinity is
disabled. Additional changes that will be made during the second se-
quence of 4D-Var analyses will include: (a) explicitly allowing for the
correlation between errors in the prior and observations during the
period of overlap between the current cycle and the previous cycle;
(b) refinements to the background error covariance and observation
error covariance model parameters based on the analyses of the in-
novations in Section 4.2; and (c) correction of the 6 h offset in the
specification of the ERA Interim net surface radiation fields. As expe-
rience in NWP has shown, it is anticipated that further improvements
in the CCS circulation analyses can be expected by future iterative
refinements of the analysis system resulting from rigorous quantita-
tive analysis of the 4D-Var circulation estimates by the oceanographic
community.

Both sequences of analyses are available to the oceanographic
community from http://oceanmodeling.ucsc.edu/ and represent a
valuable community resource that can be used for a wide range of ap-
plications. Some recent applications by NOAA include modeling the
population of juvenile Salmon (Schroeder et al., 2014), larval trans-
port studies (Bjorkstedt, personal communication), and understand-
ing whale migration patterns along the U.S. west coast (Forney and
Becker, personal communication). Analysis of the circulation variabil-
ity captured by the 4D-Var analyses is ongoing (e.g. Jacox et al., 2014;
2015), and Part II will be dedicated to analysis of the CCS circulation
variability on interannual-to-decadal timescales.
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